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ARTICLE INFO ABSTRACT

Early detection of ventricular fibrillation (VF) is crucial for the success of the defibrillation therapy in
automatic devices. A high number of detectors have been proposed based on temporal, spectral, and
time-frequency parameters extracted from the surface electrocardiogram (ECG), showing always a lim-
ited performance. The combination ECG parameters on different domain (time, frequency, and time-fre-
quency) using machine learning algorithms has been used to improve detection efficiency. However, the
potential utilization of a wide number of parameters benefiting machine learning schemes has raised the
need of efficient feature selection (FS) procedures. In this study, we propose a novel FS algorithm based
on support vector machines (SVM) classifiers and bootstrap resampling (BR) techniques. We define a
backward FS procedure that relies on evaluating changes in SVM performance when removing features
from the input space. This evaluation is achieved according to a nonparametric statistic based on BR. After
simulation studies, we benchmark the performance of our FS algorithm in AHA and MIT-BIH ECG dat-
abases. Our results show that the proposed FS algorithm outperforms the recursive feature elimination
method in synthetic examples, and that the VF detector performance improves with the reduced feature
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set.
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1. Introduction

Ventricular fibrillation (VF) is a life-threatening cardiac arrhyth-
mia caused by a disorganized electrical activity of the heart (Moe,
Abildskov, & Han, 1964). During VF, ventricles contract in an
unsynchronized way (Baykal, Ranjan, & Thakor, 1997), failing the
heart pumping of blood. Sudden cardiac death will follow in a mat-
ter of minutes unless medical care is provided immediately. The
only effective treatment to revert VF is the electrical defibrillation
of the heart (Beck, Pritchard, Giles, & Mensah, 1947), which con-
sists of delivering a high energy electrical stimulus to the heart
with a so-called defibrillator device (Mirowski, Mower, & Reid,
1980; Thakor, 1984). Clinical and experimental studies have dem-
onstrated that the success of defibrillation is inversely related to
the time interval between the beginning of the VF episode and
the application of the electrical discharge (White, Asplin, Bugliosi,
& Hankins, 1996; Yakaitis, Ewy, & Otto, 1980). This has impelled
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the development of VF detection algorithms for monitoring sys-
tems and automatic external defibrillators (AED). These algorithms
analyze the surface electrocardiogram (ECG), providing an accurate
fast diagnosis of VF, in order to reduce the reaction time of the
health care personnel in monitory systems, and to supply the
appropriate therapy without the need of qualified personnel in
AEDs (Faddy, 2006).

A high number of VF detection schemes based on parameters
extracted from the ECG have been proposed in the literature. These
parameters are usually obtained from different ECG representa-
tions, such as time, frequency and time-frequency domains.
Time-domain methods analyze the morphology of the ECG to dis-
criminate VF rhythms (Aubert, Denys, Ector, & Geest, 1982; Chen,
Thakor, & Mower, 1987; Chen, Clarkson, & Fan, 1996; Clayton,
Murray, & Campbell, 1993; Jack et al., 1986; Thakor, Zhu, & Pan,
1990; Zhang, Zhu, Thakor, & Wang, 1999). Frequency-domain mea-
surements are motivated by experimental studies supporting that
VF is not a chaotic and disorganized pathology, but instead a cer-
tain degree of spatio-temporal organization exists (Clayton, Mur-
ray, & Campbell, 1995; Davidenko, Pertsov, Salomonsz, Baxter, &
Jalife, 1992; Jalife, Gray, Morley, & Davidenko, 1998). Spectral
description of the ECG has revealed important differences between
normal and fibrillatory rhythms (Clayton et al., 1995; Forster &
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Weaver, 1982; Herschleb, Heethaar, de Tweel, Zimmerman, &
Meijler, 1979; Murray, Campbell, & Julian, 1985), and in this con-
text, relevant parameters of the ECG spectrum have been used
for developing VF detectors (Barro, Ruiz, Cabello, & Mira, 1989;
Kuo & Dillman, 1978; Forster & Weaver, 1982; Nolle et al., 1989;
Nygards & Hulting, 1978). On the other hand, given the non-sta-
tionary nature of the VF signal, algorithms based on time-fre-
quency distributions have been also proposed to detect VF
episodes (Afonso & Tompkins, 1995; Rosado et al., 1999; Clayton
& Murray, 1998).

Though many VF detectors based on temporal, spectral, or
time-frequency parameters have been disclosed, comparative
studies have shown that these algorithms are not optimal when
considered separately (Amann, Tratnig, & Unterkofler, 2005; Clay-
ton, Murray, & Campbell, 1994). The combination of ECG parame-
ters have been suggested as a useful approach to improve
detection efficiency. In Clayton et al. (1994), Neurauter et al.
(2007) and Pardey (2007), a set of temporal and spectral features
were used as input variables to a neural network, exhibiting better
performance than previously proposed methods. Following this
approach, other statistical learning algorithms such as clustering
methods (Jekova & Mitev, 2002), support vector machines (SVM)
(Ubeyli, 2008), or data mining general procedures (classification
trees, self-organizing maps) (Rosado-Muiioz et al., 2002), have
been explored aiming to enhance VF detection capabilities. How-
ever, this has increased the number of ECG parameters used to de-
tect VF, which in turn has raised the need of efficient feature
selection (FS) techniques for assessing the discriminatory proper-
ties of the selected variables (Ribeiro, Marques, Henriques, &
Antunes, 2007; Zhang, Lee, & Lim, 2008). Besides of improving
the accuracy of VF detectors, the use of FS techniques might
help researchers to provide a better understanding of the unre-
solved mechanisms responsible for the initiation and perpetuation
of VF.

In this paper, we present a novel FS algorithm to reduce the size
of the input feature space while providing an accurate detection of
VF episodes. We use a set of temporal, spectral, and time-fre-
quency parameters extracted from the AHA and MIT-BIH ECG sig-
nal databases as the input space to nonlinear SVM. We choose SVM
as detection algorithm for VF since they have shown an excellent
performance in arrhythmia discrimination applications (Osowski,
Hoai, & Markiewicz, 2004; Ubeyli, 2008), and it has been demon-
strated that FS methods can further improve SVM performance
(Guyon, Weston, Barnhill, & Vapnik, 2002). The relevance of input
variables is evaluated by comparing the detection performance of
the complete set of input variables and a reduced subset of them.
This comparison is achieved according to a nonparametric statisti-
cal test, based on bootstrap resampling (BR) (Efron & Tibshirani,
1994). Starting with the whole set of input variables, we progres-
sively eliminate the most irrelevant feature, until a subset of signif-
icant variables is identified. This ensures that the performance of
the final VF detector will not be significantly different worse from
the initial one containing all features. The aim of this study is,
therefore, to develop an accurate VF detector using the smallest
yet representative set of ECG parameters. We compare this novel
method to the most commonly used FS algorithm in the SVM liter-
ature, the so-called SVM recursive feature elimination (SVM-RFE)
(Guyon et al., 2002; Rakotomamonjy, 2003), by means of a toy
example. Then, we apply the proposed FS algorithm to the ECG sig-
nal databases.

The paper is organized as follows. Section 2 provides a brief
background on SVM and FS techniques. Section 3 describes the
ECG database used in this study. In Section 4, the proposed FS algo-
rithm is presented. Section 5 is dedicated to analyze the perfor-
mance of our novel FS method by means of a toy example. Then,
in Section 6, results over the ECG signal databases are presented

and finally, in Section 7, we discuss the scope and limitations of
our approach along with future extensions.

2. Background
This section reviews the SVM formulation and the field of FS.
2.1. SVM classifiers

In recent years, SVM classification algorithms have been used in
a wide number of practical applications (Camps-Valls, Rojo-
Alvarez, & Martinez-Ramén, 2007). Their success is due to the
SVM good properties of regularization, maximum margin, and
robustness with data distribution and with input space dimension-
ality (Vapnik, 1995). SVM binary classifiers are sampled-based
statistical learning algorithms which construct a maximum margin
separating hyperplane in a reproducing kernel Hilbert space.

Let V be a set of N observed and labeled data, V = {(x1,y1),...,(X-
wYn)), where x; € RY and y; € {—1,+1}. Be ¢(x;) a nonlinear trans-
formation to a (generally unknown) higher dimensional space R/,
called Reproducing Hilbert Kernel Space (RKHS) in which a sepa-
rating hyperplane is given by

(¢(xi),w) +b =0 (1)

where (-,-) expresses the vector dot product operation. We know
that K(x;,X;) = (¢(X), ¢(X;)) is a Mercer’s kernel, which allows us to
calculate the dot product of pairs of vectors transformed by ¢(-)
without explicitly knowing neither the nonlinear mapping nor
the RKHS. Two often used kernels are the linear, given by
K(xi,X;) = (X;,X;), and the Gaussian, given by

X — X2
K(x,.%) = exp (26” @)

With these conditions, the problem is to solve

S PR
min {QWI +Ci§;é,} 3)

constrained to y{(¢(x;)w)+b)-1+¢ >0 and to & >0, for
i=1,...N, where ¢ represent the losses, and C is a regularization
parameter that represents a trade-off between margin and losses.
By using Lagrange multipliers, (3) can be rewritten into its dual
form, and then, the problem consists of solving

N
max o

constrained to 0<o;<C and YY,05; =0, where o; are the
Lagrange multipliers corresponding to primal constraints. After
obtaining the Lagrange multipliers, the SVM classification for a
new sample x is simply given by

1 N
-3 Z oy 0y;K (X;, x,-)} (4)
=

N
Y= owyK(xi,x)+b (5)

i=1

Gaussian kernel width ¢, and parameter C, are free parameters that
have to be settled, and methods such as cross-validation or boot-
strap resampling can be used for this purpose.

2.2. Feature selection techniques

Performance of supervised learning algorithms can be strongly
affected by the number and relevance of input variables. FS
techniques emerge to cope with this problem, aiming to find a
subset of the input variables that best describes the underlying
structure of the data as well or better than the original features
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(Salcedo-Sanz, Camps-Valls, Pérez-Cruz, Sepulveda-Sanchis, &
Bousofio-Calzén, 2004). FS techniques can be divided into three
major categories (Saeys, Inza, & Larrafiaga, 2007): filter methods,
wrapper methods, and embedded methods.

Filter methods (Blum & Langley, 1997) evaluate the relevance of
each variable by individually examining the intrinsic properties of
the data. Variables are ranked according to a predefined relevance
score, so that low-scored variables are removed. Those selected
variables constitute then the input space of the classifier. Examples
of filter methods (Salcedo-Sanz et al., 2004) are y>-test, Wilks’s
lambda criterion, principal/independent component analysis, mu-
tual information techniques, correlation criteria, Fisher’s discrimi-
nant scores, classification trees, self-organization maps, or fuzzy
clustering. Filter methods are computationally easy and fast.
However, they do not usually take into account the existence of
nonlinear relationships among features, and the classification per-
formance of a detector can be reduced in this previous step.

Wrapper methods (Kohavi & John, 1997) use the performance of
a (possibly nonlinear) classification algorithm as quality criterion
for evaluating the relevant information conveyed by a subset of
features, i.e., a search procedure in the whole feature space is de-
fined, and different candidate subsets are scored according to their
classification performance. The subset of features which yields the
lowest classification error is selected. Using a wrapper method of-
ten requires to define a classification algorithm, a relevance crite-
rion to assess the prediction capacity of a given subset of
features, and a searching procedure in the space of all possible sub-
sets of features. The (usually heuristic) searching procedures can
be divided into two types, namely, randomized and deterministic
search methods. Examples of randomized methods are genetic
algorithms or simulated annealing (Kohavi & John, 1997). On the
other hand, deterministic methods, also called greedy strategies,
perform a local search in the feature space and are computationally
advantageous and robust against overfitting. The most common
deterministic algorithms are forward and backward selection
methods. Starting with an empty set of features, forward selection
methods progressively add those variables that lead to the lowest
classification error until the prediction performance is not longer
improved. Backward selection methods start with the full set of
features, and progressively eliminate those variables with the low-
est discrimination capacity. Wrapper methods usually outperform
filter strategies in terms of classification error, however, they are
computationally intense and can suffer from overfitting if working
with reduced data sets.

Finally, embedded methods combine the training process with
the search in the feature space. For the particular case of the so-
called nested methods (Guyon & Elisseeff, 2003), the search proce-
dure is guided by estimating changes in the objective function (e.g.,
classifier performance) for different subsets of features. Together
with backward and forward selection techniques, nested methods
constitute very efficient schemes for FS (Guyon & Elisseeff, 2003).

An example of such nested method is the SVM-RFE algorithm
which is a SVM weight-based method proposed by Guyon et al.
for selecting relevant genes in a cancer classification problem
(Guyon et al, 2002), and it was subsequently extended by
Rakotomamonjy for its application in nonlinear classification
problems (Rakotomamonjy, 2003). The SVM-RFE algorithm
analyzes the relevance of input variables by estimating changes
in the cost function

Ay = W[ — [y (6)

where w= 3", 0,y;¢(x;) represents the SVM weight vector in
the RKHS for the complete set of input variables and w, =
>N ]otg'”y,-¢(x§“> denotes the SVM weight vector when variable u
is removed. It is assumed that oc,?“) =o; to compute changes in

AJy. A detailed description of the algorithm formulation can be
found in Guyon et al. (2002) and Rakotomamonjy (2003).

In this study, we develop an embedded method based on the
SVM formulation. Previously proposed embedded methods Rak-
otomamonjy (2003), Neumann, Schnorr, and Steidl (2005) and Bi
et al. (2003) are based on scores which may have significant vari-
ations with small variations on the input data. Therefore, a robust
statistical criterion would be desirable to evaluate the relevance of
a set of variables. We propose the use of BR for this purpose, as pre-
sented in Section 4.

3. ECG parameters database

This section details the characteristics of the datasets used in
this study and the features extracted.

3.1. Data collection and pre-processing

ECG signals from the AHA Arrhythmia Database (8200 series)
(AHA, 2010) and the MIT-BIH Malignant Ventricular Arrhythmia
Database (MIT, 2010) were considered. No preselection of ECG epi-
sodes was made. A total of 29 patient recordings were analyzed,
each containing an average of 30 min of continuous ECG, from
which approximately 100 min corresponded to VF. For each record,
segments of 128 samples and 125 Hz sampling frequency were
used, giving a 1.024 s window for the analysis. This segment length
was chosen to contain at least one QRS complex (if existing in the
analyzed signal). A general signal pre-processing was done, firstly
subtracting the mean ECG signal value, and secondly, low-pass fil-
tering at 40 Hz to remove the 50 Hz or 60 Hz power line interfer-
ence and other high frequency components that were not
relevant for the analysis.

3.2. Time-frequency parametrization

Each window segment was processed to obtain a set of tempo-
ral (t), spectral (f), and time-frequency (tf) parameters (see Table
1). The first two parameters were extracted in the time domain,
due to their simplicity and their ability to reject non-VF rhythms
(Rosado et al., 2000). Let x[n] be the sampled ECG signal. Then,
the following temporal parameters were used:

e VR: Variance of the x?[n] signal, normalized by its maximum. VR
is closely related to peak presence. Since VF signal lacks of
prominent peaks, a high value of VR is considered as corre-
sponding to a non-VF episode.

e RatioVar: Ratio of the variance of x[n] — x[n — 1] to the vari-
ance of its absolute value. This parameter accounts for the sym-
metry between positive and negative values of x[n]. Due to the
oscillatory nature of FV episodes, high values of RatioVar were
observed during FV.

Next, a total of 25 parameters were obtained from the Pseudo
Wigner-Ville (PWV) distribution (Claasen & Mecklenbrauker,
1980). The time-frequency distribution of a time-dependent signal
represents the evolution of its spectral components along time,
providing with joint information of both time and frequency do-
mains. Therefore, based on this time-frequency analysis, temporal,
spectral, or time-frequency parameters can be defined. For each
ECG segment, we calculated the absolute value of its PWV distribu-
tion. Then, components falling below 10% of the maximum were
set to zero to eliminate noise and interference, while keeping the
major informative content. In order to characterize VF episodes,
two spectral bands of interest were defined (Herschleb et al.,
1979; Macfarlane & Veitch, 1989). Since most of the energy
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Table 1
Statistics of the temporal (t), spectral (f) and time-frequency (tf) ECG extracted parameters (mean * std), for the different pathologies under consideration.

# Variable Domain NORMAL OTHER VT VE-FLUTTER

1 VR t (82£6.7)-10" (6.0+5.0)-10%° (1.6+3.4)-10" (1.5+1.1)- 10"
2 RatioVar t (1.6+0.5)-10*° (1.8%0.5)-10%° (2.5+0.6)-10 (2.7+04)-10%°
3 PmxFreq f (5.5+3.2)-10" (4.0+2.5)-10% (2.8+2.0)-10% (26+1.2)-10"
4 MaximFreq f (22+0.8)-10"! (20£0.7)- 10" (1.5£0.8)- 10" (1.4%0.5)-10"!
5 MinimFreq f (7.3£4.9)-10! (6.3+3.8)-10°! (64%35)-107! (69%3.6)-107!
6 TSNZ tf (1.1+0.6)-10% (1.1£0.6)-10% (1.6£0.5)-10% (1.5+04)-10%
7 TSNZL f (6.4%3.1)- 10" (6.8+3.0)- 10" (1.2£3.1)- 10" (1.2£3.0)-10*?
8 TSNZH f (2.0£2.3)-10" (1.8+2.2)-10" (1.5+2.1)- 10" (1.2+1.7)-10"
9 QTL f (0.6+1.0)-10°" (65+1.0)-10°" (7.7+1.1)-107" (81£1.1)-10!
10 QTH f (1.8+1.0)-107" (1.5+0.9)-107" (0.8+0.9)-10"" (06+0.7)-107"
11 QTEL f (71+£1.1)-107! (73+1.1)-107! (8.3%1.0)-107! (09+1.0)-10°!
12 QTEH f (1.7+£12)-10°! (11£08)-107" (05+0.7)-107" (03£05)-107"
13 te tf (0.6+1.0)-10"° (0.2£5.1)-101° (0.1£2.0)-10"" (1.2+1.9)-10"
14 teh f (0.8+1.2)-10*® (0.4+18.)-10" (0.3£7.3)-10"1° (03+1.2)-10%®
15 tel f (4.8+7.0)-10"® (0.1£2.6)-101° (0.7£9.3)-101° (11£1.5)-10"
16 cT8 t (3.7+£1.6)-10" (3.9%1.5)-10" (6.3+1.3)-10" (6.2+1.3)-10*
17 MDL8 t (9.1£4.1)-10"! (8.6+3.8)-10"" (6.8+3.5)-10"" (6.1+2.4)-10"
18 VDL8 t (9.7+4.2)-10" (8.7+3.8)-10"! (49+2.8)-10"" (4.5%2.0)-10"!
19 Curve f (14£1.7)-107" (1.7£1.7)-107" (-1.0£2.8)-107" (-1.8+3.0)- 107"
20 Lfreq f (9.9+45)-10" (8.0+3.1)-10° (6.1+42)-10" (5.0+1.5)-10"°
21 Ltmp t (1.5+1.1)- 10" (1.7£1.3)-10"! (34%2.1)-10" (3.5%2.2)-10"
22 MaxFreq f (1.3£0.5)- 10" (1.0£04)- 10" (0.8+0.5)- 10" (0.7£0.2)- 10"
23 MimFreq f (26+1.6)-107 (22+1.4)-107 (1.9+0.9) 10" (2.0+0.8)-10"°
24 Area tf (1.3%1.1)- 10" (1.3+1.0)- 10" (1.9+1.4) 10" (1.7+1.1)- 10"
25 Nareas tf (14+0.7)-10* (1.4+0.9)-10% (2.0+0.9)-10% (1.8+0.8)-10%
26 Tmy tf (1.5+0.7)-10% (1.5+0.6)-10%2 (29+1.2)-10% (2.7+1.3)-10"
27 Dispersion tf (21+46)-107 (1.9+46)-10" (59+7.7)-10" (5.8+7.8)-10"
28 DF f (4.4+3.0)-10* (4.0 +3.6)-10% (3.6+1.0)-10™ (3.9+1.2)-10*
29 DFBW f (1.5+1.3)-10" (1.3£1.0)-10% (0.9+0.8)-10% (1.0+0.2)-10%
30 FF f (3.6+1.0)-10"° (3.7+1.2)-10" (44+12)-10" (45+1.3)-10"
31 o1 f (47+15)-107" (49%1.6)-107" (51+1.8)-107! (53%1.8)-107!
32 RI f (29+22)-107! (3.3%23)-10! (56+1.8)-107! (53+1.6)-107!
33 PFO f (40+3.3).10° (43£3.3)-10° (7.5£6.0)- 1073 (73£6.5)-10
34 PF2 f (32%20)-1073 (33%2.1)-1073 (22%3.3)-1073 (25+4.0)-1073
35 PF3 f (1.7+1.1)-10°3 (1.7£1.3)-10°3 (06+1.1)-10°3 (05+1.2)-10°3
36 PF4 f (1.0+0.8)-10°3 (88+8.7)-107% (24+50)-1074 (1.6+4.0)-1074
37 PF5 f (66+6.4)-10* (52%7.2)-10* (1.4%3.0)-10* (09+21)-10*

components of VF episodes reside in the low frequencies band, we
defined a low frequency band (2 — 14 Hz) called BALO. A high fre-
quency band (BAHI, 14 — 28 Hz) was also considered, which con-
tained energy components of non-VF rhythms. Based on the PWV
distribution, a number of temporal, spectral, and time-frequency
parameters have been obtained (see Table 1, parameters from 3
to 27):

e Pmxfreq: Frequency where the maximum energy of the PWV
occurs.

e MaximFreq, MinimFreq: Frequencies with the highest and
lowest frequency content, respectively.

e TSNZ, TSNZH, TSNZL: Total sum of non-zero terms contained in
the PWV distribution, in the BAHI and the BALO bands,
respectively.

e QTL, QTH: Percentage of the total number of non-zero terms
existing in the BALO and BAHI bands, respectively.

e QTEL, QTEH: Percentage of the total energy contained in the
BALO and BAHI bands, respectively.

e TE, TEH, TEL: Total energy of the PWV distribution, in the BAHI

band, and in the BALO band, respectively.

cT8: The time axis of the PWV distribution is divided into eight

window segments. Then, for every segment, the energy in the

BALO band is measured. The cT8 corresponds to the number

of window segment that contain at least half of the energy if

the total energy of the band would be equally distributed along
the time axis.

MDL8: Number of non-zero terms contained in the BALO band

when measured at the eight window segments defined for cT8.

e VDL8: Standard deviation of the first-order derivative of MDL8.

e Curve: Curvature of the parabolic approximation performed
over the number of non-zero terms at every frequency bin of
spectral resolution in the BALO band.

e Lfreq, Ltmp, MaxFreq, MimFreq: These parameters quantify
the components, so-called half-energy region, of the PWV dis-
tribution whose energy values fall below 50% of the maximum
peak energy value. Lfreq and Ltmp represent the frequency
length and the temporal length of this half-energy region,
respectively. MaxFreq and MimFreq indicate the maximum
and minimum frequencies that limit the half-energy region.

e Area, Nareas: Area gives the total number of points contained
in a certain extracted half-energy region, and Nareas provides
with the number of half-energy regions extracted in a single
time-frequency representation.

e Tmy: Number of points between the 50% and 100% of the max-
imum energy value existing in the PWV.

e Dispersion: Difference between the maximum and the mean
values of Ltmp.

A full detailed description of the first 27 parameters can be
found in Rosado et al. (1999) and Rosado, Guerrero, Bataller, and
Chorro (2001). This set of parameters was extended to include a
number of spectral indices which have recently grown up in both
the experimental and the clinical environments to target fibrillato-
ry rhythms (Atienza et al., 2006; Everett, Kok, Vaughn, Moorman, &
Haines, 2001; Everett, Moorman, Kok, Akar, & Haines, 2001; Sand-
ers et al,, 2005). For each window segment, the power density
spectrum P,(f) (normalized by its total power) was estimated using



1960 F. Alonso-Atienza et al./ Expert Systems with Applications 39 (2012) 1956-1967

the squared module of the Fast Fourier Transform (FFT) with a 128
samples Hamming window. Based on P,(f), the following spectral
parameters have been considered (Table 1, parameters from 28
to 37):

e DF: Dominant frequency (f;). Frequency where the maximum of
P,(f) occurs.

e DFBW: Dominant frequency bandwidth (bw(fy)). Difference

between the upper and lower frequencies for which f; falls to

75% of its power value.

FF: Fundamental frequency (fp). It is sometimes assumed that a

VF episode is a near-periodic process, showing a fundamental

signal period To. Thus, f; is defined as the inverse of Tp.

PFO, PF2, PF3, PF4, PF5: Normalized power at harmonics fre-

quency peaks. Harmonics are the frequencies corresponding

to the integer multiples of f,. Here, we consider up to the 5th

harmonic, from f, =2 x fy to fs =5 x fo. Then, we measure the

normalized power at fy (1st harmonic), f>, f3, fs and fs, which

we denote by PFO, PF2, PF3, PF4 and PF5, respectively.

0I: Organization index. Ratio of the power under harmonic

peaks (up to f;) to the total power in the BALO band.

RI: Regularity index. Ratio of the power under bw(f;) to the

total power in the BALO band.

The parameterization of ECG signal segments finally resulted in
an input dataset consisting of N =57,908 observations and 37 fea-
tures. For each observation, four different groups have been con-
sidered according to different pathologies, which appeared with
different prior probabilities: NormaL (p; = 40.25%), for normal sinus
rhythm; vt (p, = 8.84%), for ventricular tachycardia (VT) including
their variants (regular VT, polymorphic VT or “torsades de poin-
tes”); vr-Fumek (p3 = 10.66%), for VF signal and flutter, both having
the same application therapy (electric shock); and OTHErs
(p4 =40.25%), comprising the rest of arrhythmias. It is essential to
remark that polymorphic VT is hardly distinguished of VF by
means of the ECG, and for this reason the automatic discrimination
between VF and VT (specially polymorphic) is a complex issue.

4. FS algorithm

In this section, we present our method for FS in SVM classifiers
using BR techniques, which we call SVM-BR.

4.1. BR for SVM

BR is a computer-based method introduced by Efron in 1979
(Efron & Tibshirani, 1994), which constitutes a useful approach
for nonparametric estimation of the distribution of statistical mag-
nitudes, even when the observation set is small. We propose the
use of BR to estimate the performance of SVM classifiers. This pro-
cedure can be also used to estimate SVM performance when a sub-
set of the input data is considered, thus allowing us to compare the
performance of the complete set of input variables and a reduced
subset of them.

Let V be a set of pairs of data in a classification problem, which
we call complete model. The dependence process between pairs of
data in V can be estimated by using SVM, whose coefficients are

o=[o,....,on] =s(V,C,0) (7)

where s(-) is the SVM optimization operator, depending on data V
and on free parameters C and ¢. The empirical risk for these coeffi-
cients is defined as the training error fraction of the set of pairs used
to build the machine,

Remp = t(a, V) (8)

where t(-) is the empirical risk estimation operator.

A bootstrap resample V' = {(x;,y;),..., (Xy,¥y)} is a new data
set drawn at random with replacement from sample V. Let con-
sider a partition of V in terms of the resample

V= (V;, Vo) 9)

out

being V;, and V;, the subsets of samples included and excluded in
the resample, respectively. Then, SVM coefficients for the resample
are

o =s(V;

mn’

C,0) (10)

The actual risk estimation for the resample can be obtained by
taking

R = t(o, Vi) (11)

out

Then, given a collection of B independent resamples,
{V*(1),Vv*(2),...,V*(B)}, the actual risk density function can be esti-
mated by the histogram built from replicates R*(b), whereb=1, ...,
B. A typical choice for B is from 100 to 500 resamples.

We now consider a reduced version of the observed data W,
(incomplete model in the following), in which the uth feature is re-

moved from all the available observations, W, = {(xﬁ“), y1)7...7

(x,(\}”,y,v)}, being xE“) € R, A paired resampling procedure is car-
ried out by using the same resampling set as the complete model
W, = {(x?“”,y;), o (x;,'(“),y,*\,) } then yielding a bootstrap repli-
cation of the actual risk in the incomplete model

R, = t(o, Wy ) (12)
Based on the aforementioned considerations, we use BR to quantify
changes in the SVM performance due to the elimination of variable
u. Let AR, define the SVM performance difference (in terms of actual

risk) between the complete model and the incomplete model when
variable u is removed. Then, the statistic

AR; (b) = Ry (b) R (b) (13)

can be replicated at each resample b=1, ..., B, and it represents the
estimated loss due to the information in the removed variable.
Accordingly, the statistic AR;(b) can be used to evaluate the rele-
vance (in terms of SVM performance) of variable u, as shown next.

4.2. SYM-BR algorithm

An adequate risk measurement in a classification task is the
classification error probability, denoted by P.. As stated before,
the relevance of variable u can be evaluated by comparing the error
probability between the complete feature dataset (denoted as Pe)
and the incomplete model (denoted as P,,,). To compare both mag-
nitudes we propose the use of the statistic AP, = P,,, — P and the
following hypothesis test:

e Hy: AP, =0, hence variable u is not relevant;
e Hi: AP, # 0, hence variable u is relevant.

However, the distribution of AP, is generally unknown, since
the dependence process between pairs of data p(x;y;) is not avail-
able. Therefore, we redefine the statistic as

AP;(b) =P, (b)—P,.(b), b=1,....B (14)
allowing us to estimate the distribution of test statistic AP, and
compute its confidence interval, which we call paired confidence
interval (zap,). Then, for a given significance level, H is fulfilled if
z,p; has negative values (zAp; < O) or it does contain the zero point
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(zap; C 0), otherwise, the alternative hypothesis is accepted. These
conditions imply that relevant variables emerge whenever their
elimination results in a significant decrease in the error probability
P.,, compared to the error probability of the complete model P,
hence producing a significant increase of the statistic AP;. Our pro-
posed SVM-BR algorithm for FS is defined in Algorithm 1.

Algorithm 1: SVM-BR backward selection algorithm

1. Start with all features of the input space V.

2. Built B paired bootstrap resamples of the complete V* and
the incomplete model W;,.

3. For each bootstrap sample b, and for each feature u com-
pute the bootstrap statistic

AP;(b) = P, ,(b) — P (b),Yu,b=1,....B.

and calculate the 95% z,p;.
4. If zpp; < O for any feature u:
e eliminate variable u.
Otherwise, if zsp; C 0 for any feature u, then:
e remove u with highest PCI, or
e remove u with smallest PCI.
5. If there is any feature u for which P;, < P, , then error
probability of the complete model is redefined as:

Pz,c = Pz.u

6. Finish whenever every feature fulfills zyp; > 0. Otherwise,
go to step (3).

It is worth noting that complex interactions among the input
variables can be expected whenever nonlinear SVM models are
built, such as collinearity (for the nonlinear case, co-information
or redundant information), irrelevant or noisy variables, and sub-
sets of variables being relevant only when interacting among them.
Under these situations, zap; associated to relevant variables may
also contain the zero point (ZAp; C O). For this reason, and since
it has not been defined a statistic associated to the confidence
interval of a statistic, our proposed backward selection procedure
is based on two criteria. On the one hand, we consider u as the
most irrelevant feature if it has the highest z,p;, H-PCI in the fol-
lowing. On the other hand, u is considered the most irrelevant fea-
ture if it has the smallest z,p; (S-PCI). Evaluation of both criteria is
achieved by means of toy examples, which are presented in the
next section. Note also that the backward selection procedure de-
fined in Algorithm 1 can be applied to the SVM-RFE algorithm by
bootstraping the cost function (6).

5. Toy examples

The objective of this section is twofold. Firstly, to validate the
proposed relevance criteria based on the width of the PCI, and sec-
ondly, to examine the performance of our SVM-BR algorithm by
comparing it to the SVM-RFE method. We analyzed both SVM-BR
and SVM-REFE algorithms by using a synthetic set of data in two dif-
ferent scenarios, namely, a linear and a nonlinear classification
problem. Experiments consisted in selecting the most relevant fea-
tures according to a predefined set of variables. FS algorithms were
run for 10 random trials to avoid skewed results. In those cases
where results were not reproduced in all trials, we present the
variables that were selected in the higher number of trials, indicat-
ing also the number of times that those features were selected. In
all simulations, we used N=1000 training samples and B =500
bootstrap resamples. All variables were standardized to have zero
mean and standard deviation one.

5.1. Notation

Let (X;,y;) be a set of N observations and labeled data,i=1,...,N,
where x; € R? consist of d variables or features and y; € {—1,+1}.
In a convenient abuse of notation, we will denote the row
vector X; as the set of observations relative to variable j, such us
X; = {X;1,X;2,. .., X;n}. Under these assumptions, x;; refers to the jth
variable of the ith observation. We denote N (u, o) to be a Normal
distribution with mean y and standard deviation . We also denote
U(a,b) to be a Uniform distribution in the interval (a,b), and R(r) a
Rayleigh distribution with 1 = v20.

5.2. Linear classification problem

Let {X1,X,...,Xs} be a set of random variables, where x; defines
a linearly separable problem: x;; = z + N(0, 1), being z a random
variable such as z € {—2,+2} and the probability of z=2 orz= -2 is
equal, for i=1, 2, ..., N. Variables X;, X3 and x4 are noisy features
defined as x,; = N(0,3.5),x3; =U(—0.5,0.5), and x4; = R(1) — 1,
respectively. Finally, Xs represents a redundant variable xs; =
N(0,05) — 3x;;. Note that the optimal separating hyperplane is
X; =0, such that y;=+1 if x;; >0, resulting in a theoretical error
probability given by Proakis (2001).

P.: = %erfc (f) (15)

where erfc (-) represents the complementary error function. We
analyzed the performance of both SVM-BR and SVM-RFE algorithms
for different values of parameter o, ={0.5,1,2.5,5}, allowing us to
evaluate the accuracy of both methods for different error probabil-
ity working scenarios. For each value of ¢;, we implemented two
sets of simulations in order to study collinearity effects. In the first
set, we took g5 = 3 to obtain a correlation between variables x; and
X5 above 90%. In the second, we decreased this correlation by taking
Os5 = 10.

Tables 2 and 3 show the selected features obtained from both FS
algorithms (SVM-BR, SVM-RFE) and the proposed relevance crite-
ria (S-PCI, H-PCI) operating over the two linear classification prob-
lems under study (o5 =10) and (o5 = 3), respectively. In order to
compare the performance of the obtained model, we present the
test error (mean and confidence intervals) over 500 trials for both
the original complete model (P..), and the reduced set that was fi-
nally selected (P.,). In addition, we include the theoretical error
probability associated with the classification problem P, and the
correlation coefficient R between variables x; and xs. As shown,
performances of both SVM-BR and SVM-RFE were identical for
low correlation values (g5 = 10, Table 2). Using the S-PCI criterion,
the selection procedure is optimal for all error probability working
scenarios, where as H-PCI selected the collinear variable. This,
however, did not significantly affect the performance of the se-
lected model P,,, showing slight differences compared to the opti-
mal values. Results for a high correlation scenario (o5 = 3, Table 3)
were also very similar between SVM-BR and SVM-RFE, except for
the most favourable case in terms of error probability (o; =0.5),
where SVM-RFE selected the redundant variable x5 for both crite-
ria, thus abruptly reducing performance of the algorithm. In con-
clusion, the S-PCI criterion presents optimal results, and our
SVM-BR algorithm shows a more robust behavior than SVM-RFE.
It is worth noting that the value of the SVM free parameter C
was calculated once for the complete model. We checked that
the optimal value of C did not vary significantly during the FS
procedure, which is consistent with the fact that C does not depend
on the dimension but on the signal variance (Cherkassky & Ma,
2004).
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Table 2
Performance of SVM-BR and SVM-RFE algorithms in a linear classification problem and for moderate correlation values between variables x; and Xs, (g5 = 10,N = 1000, B = 500).
Method Criterion g1=05 g1=1.0 g1=25 g1=5
SVM-BR S-PCI X1 X1 X1 X1
H-PCI X1 X1 X1 X5
SVM-RFE S-PCI X1 Xq Xq Xq
H-PCI X1 X1 X1 Xs(7)
P, 3.9(0.0,100.0) - 10> 4(1.5,3.4)- 102 0.21(0.19,0.24) 0.35(0.32,0.38)
SVM-BR P, S-PCI 3.4(0.0,100.0)- 107> 3(1.4,3.2)-1072 0.21(0.19,0.24) 0.34(0.32,0.37)
P, W-PCI 3.4(0.0,100.0)- 107> 2.3(1.4,3.2)- 1072 0.21(0.19,0.24) 0.37(0.34,0.40)
SVM-RFE P, S-PCI 3.4(0.0,100.0)- 107> 3(1.4,3.2)-1072 0.21(0.19,0.24) 0.34(0.32,0.37)
P, W-PCI 3.4(0.0,100.0) - 10> 3(1.4,3.2)- 102 0.21(0.19,0.24) 0.37(0.34,0.40)
P 32.107° 2.3-.1072 0.21 034
R 0.53 0.55 0.71 0.86
Table 3
Performance of SVM-BR and SVM-RFE algorithms in a linear classification problem and for high correlation values between variables x; and Xs, (5 =3, N= 1000, B = 500).
Method Criterion d1=0.5 g1=1.0 g1=2.5 g1=5
SVM-BR S-PCI X X4 Xq X,
H-PCI X1 X1 Xs5(9) Xs5(8)
SVM-RFE S-PCI X5 Xq X1 X1(8)
H-PCI X5 X X5(6) Xs5(9)
P 10.6(0.0,100.0) - 10~> 2.5(1.5,3.5)- 1072 0.21(0.19,0.24) 0.35(0.32,0.37)
SVM-BR P, S-PCI 4.2(0.0,100.0) - 10° 2 3(1.4,3.3)- 1072 0.21(0.19,0.24) 0.34(0.31,0.37)
P, W-PCI 2(0.0,100.0)- 10~ 2.3(1.4,3.3)- 1072 0.23(0.20,0.26) 0.35(0.32,0.38)
SVM-RFE P, S-CI 3.7(2.6,4.8) - 1072 2. 3(1 4,33).1072 0.21(0.19,0.24) 0.34(0.31,0.37)
P, W-PCI 7(2.6,4.8) - 1072 2.3(1.4,3.3)-1072 0.23(0.20,0.26) 0.35(0.32,0.38)
Per 32-107° 2.3.1072 0.21 0.34
R 0.90 0.92 0.95 0.98
Table 4
Performance of SVM-BR and SVM-RFE algorithms in a XOR nonlinear classification (N = 1000, B = 500).
Method Criterion 012=0.5 o12=1.0 o12=1.5 g12=2.0
SVM-BR S-PCl (X1.X2) (X1.X2) (%1,%2)(7) (%1.X2)(7)
H-PCI (X1.X2) (%1,X6)(4) x7(4) x7(5)
SVM-RFE S-PCI X6(7) x5(5) Xs5(4) X5(4)
H-PCI xg(7) x3(7) x3(5) (X4,X5)(4)
P, 3.3(0.0,14.0)- 1073 6.3(4.6,8.3)- 1072 0.19(0.16,0.23) 0.29(0.26,0.34)
SVM-BR P, S-PCI 4(0.0,100.0) - 1073 4 6(3.4,6.1)- 1072 0.17(0.15,0.20) 0.30(0.28,0.33)
P, W-PCI 4(0.0,100.0) - 10> 8.2(5.9,11.2)-102 0.23(0.20,0.27) 0.32(0.28,0.36)
SVM-RFE P, S-PCI 2.8(1.9,4.0)- 102 5. 0(4 7,5.3)-107! 0.50(0.47,0.53) 0.50(0.47,0.53)
P, W-PCI 8(1.9,4.0)- 1072 4.9(4.7,5.2)- 107! 0.50(0.47,0.53) 0.50(0.47,0.53)
Pes 6.3-107° 45.1072 0.18 0.32
R 0.69 0.69 0.7 0.7

5.3. Nonlinear classification problem

Let {Xq,X3,...,X7} be a set of random variables, where x; and x;
define an XOR classification problem: x;; =z+ N(0,012) and
X2i =2z + N(0,042), being z a random variable such as z € {-2,+2}
and the probability of z=2 or z=-2 is equal, fori=1, 2, ..., N.
From X3 to Xs different noisy variables are introduced: x;; =
N(0,3.5), x4; =U(—0.5,0.5) and x5; = R(1) — 1, respectively. Col-
linearity is introduced with Xg and x7;, defined as xg; =
3(X1i+X2) +N(0,2) and X7, = 2(X1; + X2:)> + N(0,2), respec-
tively. Together with x; and X,, note that both X5 and x; are also
relevant features (in weak sense (Kohavi & John, 1997)) since they
contain discriminatory information and therefore they can contrib-
ute to the classification performance. The theoretical error proba-
bility for this XOR problem is given by

P, = erfc <ﬁ> (16)

012

We simulated different error probability scenarios through the
parameter g, ={0.5,1,1.5,2}. Table 4 presents the selected vari-

ables for both methods and criteria. We calculated also the test er-
ror (mean and confidence intervals) over 500 trials for both the
original complete model P, ., and the reduced set that was finally se-
lected P,,. In addition, we include the theoretical error probability
associated with the classification problem P., and the correlation
coefficient R between variables (xy,X,), and Xg. As shown in Table
4, the SVM-BR algorithm using the S-PCI selected the optimal subset
of variables for all error probability scenarios, therefore reducing
the error probability compared to the complete model. Conversely,
the SVM-RFE method did not behave correctly, selecting noisy vari-
ables. This behavior could be attributed to the fact that, in a nonlin-
ear scenario, input variables are transformed to a high dimensional
space (RKHS), where the SVM weight vector is defined. Therefore

Table 5
SVM performance for FV detection in terms of sensitivity (Ss) and specificity (Sp).
FV-FLutter NoRMAL OTHERS TV (Sp) (%) Global
(Ss) (%) (Sp) (%) (Sp) (%) (Sp) (%)
5-fold 74.7 99.7 99.6 65.0 95.1
Test 69.0 99.7 99.2 59.0 93.7




this weight vector cannot be directly associated to the input space
variables to evaluate their relevance. Consequently, as stated in
Statnikov, Hardin, and Aliferis (2006), SVM-RFE algorithm might as-
sign higher weights to irrelevant variables than to the relevant ones.
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As in the linear case, SVM free parameters C and ¢ just needed to be
calculated once for the complete model. We also checked that opti-
mal values of C and ¢ did not vary significantly during the FS
procedure.
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Fig. 1. Detection example of VF episodes with SVM. Panels (a), (c) and (e) show labels and the classifier output for each ECG segment; Panels (b), (d) and (f) represent six
window segments ECG registered in locations marked as (1) (ecg;(t)) and (2) (ecg»(t)) in panels (a), (c) and (e) respectively, in arbitrary units (a.u.).
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Fig. 2. Normalized variable ranking weights of different filter methods under consideration. (a) Correlation, difference and quotient mutual information (MID + MIQ) and

Fisher criteria. (b) Combination of filters methods.

Based on the above presented results, we propose the SVM-BR
method using the S-PCI criterion as the FS algorithm to analyze
the relevance of extracted ECG parameters for VF detection.

6. Results on VF databases

In this section we analyze the proposed SVM-BR algorithm in
the problem of VF detection. We first characterize the complete
set of temporal, spectral, and time-frequency ECG parameters by
examining the performance of SVM classifiers for detecting VF.
Then, we study the combination of filter methods to reduce the
high-dimensional input space set. Finally, our SVM-BR algorithm
is applied to the resulting set of ECG parameters after filtering.

6.1. SVM performance

Given that our purpose was VF detection, a binary output target
was considered for discriminating VF episodes from other rhythms
(labeled as {—1} and {+1}, respectively). Conventional cross-valida-
tion strategy (n-fold with n=5) was followed for setting the free
parameters of the SVM. Due to the large amount of available ECG
1-s segments, the training set was defined as a random subset
(20%) of the original data, and the remaining samples were used
as test set, suitable for measuring the generalization capabilities
of the classifier. Unbalance between the examples of each class
was corrected by pre-weighting C free parameter for the two dif-
ferent classes according to their priors. Additionally, we decided
to use the complete databases, and not selected segments, as far
as these are conventionally used standard databases.

As shown in Table 5, acceptable VF detection capabilities were
obtained, nevertheless, most significant errors were present in a
number of VT segments. Fig. 1 shows application examples of
SVM for VF detection. The upper parts of Fig. 1(a), (c) and (e) show
the label of each ECG segment, whereas the lower parts represent
the classifier output. Fig. 1, panels (b), (d) and (f) represent two six-
window segment ECGs registered at locations (1) and (2) marked
with arrows in Fig. 1(a), (¢) and (e), respectively. In the first exam-
ple, Fig. 1(a) shows the evolution of the soft classifier output to-
wards a VF episode, where the transition from normal sinus
rhythm to VF is progressive. This transition interval corresponds
to a VT episode that precedes the VF onset. The upper part of
Fig. 1(b) shows an ECG record labeled as VT according to the anno-
tation file, where as the lower part depicts an ECG recording anno-
tated as VF. Both records, however, show a similar morphology

and, in the absence of a gold standard to discriminate FV, their
annotation might be different depending on the specialist. This dis-
crepancy reflects the difficulties when discriminating between VT
and VF. Fig. 1(c) represents an example of erroneous discrimina-
tion between VT and VF, where VT samples are labeled as VF. Rep-
resentative ECGs registered at locations (1) y (2) are presented in
Fig. 1(d). A correct discrimination between VT and VF is shown
in Fig. 1(e). However, the corresponding ECG (location (2)) presents
a quite regular morphology, indicating a monomorphic VT for
which specialist would clearly differentiate from VF. On the other
hand, note the differences in those ECG recordings labeled as
OtHers (panels (d) and (f)), indicating the broad spectrum of
pathologies considered within this group.

6.2. Filter methods performance

Following a similar approach as in Cho, Baek, Youn, Jeong, and
Taylor (2009), we applied filter methods to reduce the high-dimen-
sional input space data set. Specifically, we considered a combined
strategy of filter methods, accounting for second order methods
(correlation criterion), mutual information methods (difference
and quotient schemes), and the maximum separability Fisher crite-
rion. Fig. 2(a) shows the normalized variable ranking weights ob-
tained from the three filter methods under consideration for the
complete set of ECG features. We multiplied these variable ranking

Table 6
SVM classifier performance for FV detection in terms of Ss and Sp after using a
combination of filter methods.

FV-FLutter NORMAL OTHERS TV (Sp) (%) Global

(Ss) (%) (Sp) (%) (Sp) (%) (Sp) (%)
5-fold 74.1 99.8 99.5 62.0 94.7
Test 69.7 99.7 99.1 57.0 93.5

Table 7
SVM classifier performance for FV detection using the selected variables obtained
from our SVM-BR method.

FV-Fsc lutter NORMAL OTHERS TV (Sp) (%) Global

(Ss) (%) (Sp) (%) (Sp) (%) (Sp) (%)
5-fold 721 99.7 99.3 57.0 93.9
Test 71.9 99.7 99.2 56.6 93.8
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Fig. 3. Detection example of VF episodes with SVM using a reduced set of selected ECG parameters.

by each other and normalized the resultant weights, as presented
in Fig. 2(b). Then, variables under a threshold level set at 1103
were removed. Referring to Table 1, discarded variable are num-
bered as {5,8,13,14,15,23,28,31,34}.

The reduction of the input space dimension using a combina-
tion of filter methods did not reduce the performance of the VF
detection, as shown in Table 6. These results ensure that discrimi-
natory information has not been eliminated after removing vari-
ables. However, it highlights the great amount of redundant
information that it is conveyed by the complete set of variables.

6.3. SVM-BR method performance

We applied our SVM-BR method to the resultant input set of
features after filtering. Due to the large amount of observations
(N =57,908), we constructed bootstrap resamples of reduced size
(Ng=5000) and B =100 resamples iterations. Referring to Table 1,
the finally selected variables were: RatioVar, QTL, and Curve.
The performance of SVM for VF detection using this reduced set
of variables is presented in Table 7.

Note that, after applying our SVM-BR algorithm, the original in-
put space of variables has been drastically reduced while improv-
ing the performance of the VF detector compared to previous
examples (see Test results). As stated before, this result evidences
that the original set of data consists principally of redundant vari-
ables. On the other hand, it proves that the application of our FS
algorithm is useful to select a reduced set of variables which might
be used to develop new VF detectors. Detection examples using the
selected set of variables are presented in Fig. 3(a) and (b), which
correspond to the examples depicted in Fig. 1(a) and (c), respec-
tively. It can be seen, that both classes can be distinguished more
clearly, reducing the number of possible misclassified outliers.

7. Discussion and conclusions

A FS procedure has been proposed for its application to VF auto-
matic detection, which compares the performance of a classifier for
a complete set of data and a reduced subset. Comparison is
achieved by using a hypothesis test based on nonparametric BR,
and the confidence interval width is contrasted to discard variables
whenever the decision statistic lacks of discriminant capabilities, a
common situation in highly redundant variables scenarios.

7.1. SVM-BR algorithm

The analysis of our FS algorithm on synthetic data has shown its
good behavior when working with noisy and collinear variables.
Previous studies on the usefulness of SVM for developing FS
algorithms (Guyon et al.,, 2002; Ishak & Ghattas, 2005; Rak-
otomamonjy, 2003; Weston, Elisseeff, Scholkopf, & Tipping, 2003)
follow a similar methodology, the selection process relying on
evaluating the differences on a performance measurement when
a subset of input variables is removed. Usual performance mea-
surements are either the norm of the classification hyperplane,
lw]||%, or some upper bound of the structural risk. Nevertheless,
these performance measurements can be affected by the data var-
iability, hence making necessary some relevance criterion exploit-
ing the statistical nature of the objective function. In this setting,
Ishak and Ghattas (2005) proposed the use of BR over the target
functions defined in Guyon et al. (2002) and Rakotomamonjy
(2003), aiming to improve the relevance criterion estimation.
Resampling, however, is not used therein as a tool for defining a
hypothesis test evaluating the relevance of a feature set. Hence,
our FS proposal is new with respect to methods to date.

The SVM-BR algorithm has demonstrated to be very efficient
when working with high-dimensional complex scenarios, having
a great amount of redundant variables. The performance of our
FS method over the AHA and MIT-BIH databases using the selected
set of variables has been improved in comparison to the original
set, highlighting the potential of our algorithm to extract relevant
features. In the case of the detection of VF episodes, our SVM-BR
can be extended to analyze ECG parameters defined in the litera-
ture and to provide a reduced set of discriminatory measurements,
thus decreasing the computational requirements to develop real-
time VF detectors.

7.2. Limitations of the study

The main limitation of our FS method, generally shared by
methods based on SVM, is their dependence on the free parame-
ters. The search of an adequate working point for SVM classifica-
tion is crucial ir order to ensure the FS working properly.
However, after the free parameters are fixed, we do not need to
re-train the machine during the selection procedure. The effect of
re-training after feature removing has been evaluated before, con-
cluding that it is not generally necessary (Guyon et al., 2002; Ishak
& Ghattas, 2005; Rakotomamonjy, 2003). With respect to the
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computational burden of our algorithm, training process is made
just once (for each working scenario), yet this is a costly procedure,
specially for nonlinearly separable problems. The burden due to BR
is high, hence our FS algorithm can be considered as computation-
ally intensive.

We analyzed continuos ECG signals by means of 1-s window
segments to mimic real-time acquisition procedures in EADs and
monitoring systems, such as Holter devices. As suggested by others
(Amann et al., 2005), a larger window length for processing might
improve the performance of detection algorithms. Nevertheless,
this second-by-second detection is capable of describing the
pathology evolution at the higher episode level, thus demonstrat-
ing that SVM constitute an adequate tool for developing VF detec-
tion algorithms.

7.3. VF vs VT discrimination

With respect to VF detection, the SVM algorithm can correctly
discriminate it from different pathologies, but it misclassifies VF-
Flutter as VT. Given that VT is often an early stage of VF, it is well
known that VT-VF discrimination is a complex problem. In fact,
flutter episodes, which are here included in VF, are often consid-
ered as a kind of VT. Results for VT and VF in the literature should
be taken with caution. Some of them use previously selected seg-
ments of VT and VF for evaluating the performance of their algo-
rithms (Thakor et al.,, 1990), and others present the comparison
between VT-VF and sinus rhythm (Jekova, 2000). However, when
complete and non pre-selected ECG recordings are used, sensitivity
and specificity in VF detection are around 80% (Amann et al., 2005).
Accordingly, our VF detection method can be considered as accept-
able, given that we did not pre-select the episodes, and more,
sometimes discrepancies can be raised between the databases la-
bels and other specialists opinion on the episodes. Hence, the suc-
cess rate can be further improved by means of two alternatives.
First, aiming to improve VT vs VF discrimination, the labels of VT
and VF could be revised by a committee of specialists. This has
not been addressed in this work because we wanted to obtain
the performance of our method in the actual standard of databases
for discrimination algorithms. Second, more sophisticated detec-
tion logic could be built, by combining previously proposed tech-
niques for normal rhythm discrimination (Rosado et al., 2001;
Rosado-Mufioz et al., 2002) or by developing SVM algorithms spe-
cialists on VT-VF discrimination. Another possible future develop-
ment consists of the use of combination of kernels devoted to
temporal, spectral, and time-spectral parameters.

7.4. Feature extraction and VF discrimination system

It is widespread accepted that systems for VF detection must be
focused at yielding 100% sensitivity for VF, and then trying to in-
crease the specificity for improving patient’s life quality, and in
fact, implantable devices follow this guideline in their design. We
have proposed here a pattern recognition scheme with improved
feature selection as the basis for a VF detection system, and hence,
we have devoted our effort to the optimization at the feature
extraction stage. The computational burden of the process in its
current state is still high as for being introduced in an detection de-
vice or system, but our purpose in this research line is to be able to
merely optimize the feature selection stage. The 100% sensitivity
must be required at a higher level stage, using the 1-s optimized
features but using additional episode logic detection, in order to
consider the features in a larger time window (typically 6-8s.),
and taking into account information such as the consecutive pres-
ence of VF in a certain number of 1-s windows, or other episode-le-
vel considerations. Such (more complex) scheme is out of the scope
of the paper. Previous work for VF detection in the literature often

uses (sometimes implicitly) this same approach. There are previ-
ous works that focus on increasing the sensitivity and specificity
of their detection simultaneously, and reporting sensitivities lower
than 100% required for system implementation. This is acceptable
as far as we keep in mind that the final system must provide an
episode detection logic yielding 100% sensitivity, and as high as
possible specificity (Amann et al., 2005).

7.5. Conclusions

A novel FS algorithm has been defined based on SVM classifiers
and BR techniques. Results have shown good performance both in
toy examples and in the analysis of AHA and MIT-BIH databases for
detecting VF. Further extensions of this work account for improv-
ing FV-VT discrimination and analyzing potential discriminatory
ECG parameters to develop real-time VF detectors.
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