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Abstract—The problem of signal interpolation has been inten-
sively studied in the Information Theory literature, in conditions
such as unlimited band, nonuniform sampling, and presence of
noise. During the last decade, support vector machines (SVM)
have been widely used for approximation problems, including
function and signal interpolation. However, the signal structure
has not always been taken into account in SVM interpolation.
We propose the statement of two novel SVM algorithms for
signal interpolation, specifically, the primal and the dual signal
model based algorithms. Shift-invariant Mercer’s kernels are
used as building blocks, according to the requirement of bandlim-
ited signal. The sinc kernel, which has received little attention
in the SVM literature, is used for bandlimited reconstruction.
Well-known properties of general SVM algorithms (sparseness
of the solution, robustness, and regularization) are explored
with simulation examples, yielding improved results with respect
to standard algorithms, and revealing good characteristics in
nonuniform interpolation of noisy signals.

Index Terms—Dual signal model, interpolation, Mercer’s
kernel, nonuniform sampling, primal signal model, signal, sinc
kernel, support vector machine (SVM).

1. INTRODUCTION

IGNAL interpolation is a widely studied research area

[1]-[4]. The interpolation in the information and commu-
nication era has its roots on Sampling Theory, and specifically,
on the Whittaker-Shannon-Kotel’nikov (WSK) equation, also
known as Shannon’s sampling theorem [5], [6], which states
that a bandlimited, noise free signal can be reconstructed from
a uniformly sampled sequence of its values, assumed that the
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sampling period is properly chosen according to the signal
bandwidth. The nonuniform sampling of a bandlimited signal
can also be addressed whenever the average sampling period
still fulfills Shannon’s sampling theorem, and it is used in a
number of applications, such as approximation of geophysical
potential fields, tomography, and synthetic aperture radar (SAR)
[7]-[9]. Given that noise can often be present, the reconstruc-
tion of a bandlimited and noise corrupted signal from its
nonuniformly sampled observations becomes a hard problem.
According to [10], two strategies have been mainly followed:
(1) consideration of shift-invariant spaces, similar to the case of
uniform sampling; and (2) definition of new basis functions (or
new spaces) that are better suited to the nonuniform structure of
the problem. The first one has been studied the most, following
the work developed in the late fifties by Yen [11] using the sinc
function as an interpolation kernel. Although, in the theory,
Yen’s interpolator is optimal in the least squares (LS) sense,
ill-posing appears when computing the interpolated values
numerically [8]. To overcome this limitation, numerical regu-
larization has been widely used [12]. Alternatively, a number
of iterative methods have been proposed, including alternating
mapping, projections onto convex sets, and conjugate gradient
[71, [13]-[15]. Other authors have used noniterative methods,
such as filter banks, either to reconstruct the continuous time
signal, or to interpolate to uniformly spaced samples [16], [17],
[3], but none of these methods is optimal in a LS sense, and
thus many approximate forms of the Yen’s interpolator have
been developed [18], [19]. The previously mentioned methods
have addressed the reconstruction of bandlimited signals, but
the question of whether a signal that is not strictly bandlimited
can be recovered from its samples has emerged. Specifically,
a finite set of samples from a continuous-time function can be
seen as a duration-limited discrete-time signal in practice, and
then it cannot be bandlimited. In this case, the reconstruction of
a signal from its samples depends on the a priori information
that we have, and the classical sinc kernel has been replaced
by more general kernels that are not necessarily bandlimited
[2], [3]. This issue has been mostly studied in problems of
uniformly sampled time series.

As a summary, the following main elements are (either im-
plicitly or explicitly) considered by signal interpolation algo-
rithms: the kind of sampling (uniform or nonuniform), the noise
(present or not), the spectral content (bandlimited or not), and
the use (or not) of numerical regularization. But, in spite of the
great amount of work developed to date, the search for new ef-
ficient interpolation procedures is still an active research area.
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In this context, we propose the use of support vector ma-
chines (SVM) as a signal interpolator in the presence of noise.!
SVM were originally stated for classification and regression
problems. However, the consideration of different signal models
(equation that relates the observation and the data according to
a given signal structure for both) has allowed to extend the for-
mulation of SVM algorithms to a number of digital signal pro-
cessing problems, which are in essence very different from a
classification and regression model structure [20]-[22]. SVM
algorithms exploit the structural risk minimization (SRM) prin-
ciple to regularize the model, and use the rather old kernel trick
to easily build nonlinear models from linear ones [23]. The SRM
principle states that a better solution (in terms of generalization
capabilities) can be found by minimizing an upper bound of the
generalization error. This minimization constitutes a Tikhonov
regularization [24] that, in turn, yields the least possible com-
plexity to the resulting machine. As a result, SVM commonly
exhibit less overfitting than other classical models developed
under the empirical risk minimization (ERM) principle. Also,
SVM are robust against outliers and impulse noise, due to its
cost function of the residuals [21]. Interestingly, such a proce-
dure produces sparse solutions,2 which can dramatically reduce
the computational burden of the solution in its application stage
and, at the same time, it enables to express the solution as a
linear combination of the most relevant samples in the problem
(the so-called support vectors).

Therefore, understanding the advantages of the above men-
tioned SVM algorithms gives us the key for making new (ro-
bust and sparse) algorithms for signal interpolation. On the one
hand, SVM have been previously used for interpolation applica-
tions, but key and basic concepts from Information Theory, such
as the bandwidth or the kind of sampling, have not been taken
into account, so that little connection has been established with
the wide existing work in time series interpolation. On the other
hand, sparseness and robustness would be extremely useful in
the hard problem of interpolation of noisy, possibly nonuni-
formly sampled, time series. Additionally, the bandlimited na-
ture of the SVM interpolation can be readily controlled by the
Mercer’s kernel that is being used. The Gaussian [or radial basis
function (RBF)] Mercer’s kernel is not a bandlimited function,
and hence, it is appropriate for interpolation of nonbandlimited
time series. Alternatively, it has been proven that the sinc kernel,
when adequately expressed, lies in a reproducing kernel Hilbert
space (RKHS), and hence, it can be used as a Mercer’s kernel
in SVM interpolation of bandlimited time series [26], [27]. The
RBF kernel has been widely studied in the SVM literature, but
this is not the case of the sinc kernel, which has received little
attention in this setting. As a result, the study and introduction
of SVM methods in this context is well motivated and founded.

In particular, we present here two novel SVM interpolation
algorithms. The first algorithm uses a primal signal model for-

'Without loss of generality, we will use the problem statement equations for
discrete-time series interpolation, though the results can be readily extended to
generic real-valued signal approximation problems

2Hereafter, sparseness is defined in terms of number of bases associated to
training samples rather than with regard to the number of bases in a certain
hidden space as in the case of neural networks, where good results have been
recently obtained [25].
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mulation of the problem, according to the SVM linear frame-
work for digital signal processing presented in [20], [22], in
which a robust estimation of model coefficients is indirectly
obtained from the SVM Lagrange multipliers. Note that the
SVM linear framework tells how to state robust signal pro-
cessing algorithms in general, but the algorithm for signal in-
terpolation from a primal signal model formulation has not yet
been addressed. The second algorithm, or dual signal model
formulation, uses a nonlinear regression in a RKHS of the
time instant corresponding to each observed sample, in such a
way that when the solution is expressed in terms of dot prod-
ucts in the RKHS, it can readily be expressed by means of
a Mercer’s kernel. Though SVM have been previously used
for signal reconstruction, the dual signal model has not been
explicitly expressed as the nonlinear transformation of the in-
dependent variable and analyzed from an Information Theory
point of view. For the purpose of comparison with precedent
Information Theory based formulations, we develop the SVM
algorithms in terms of the sinc kernel, the extension of the no-
tation to RBF kernel being straightforward. Also, in the exper-
iments section we compare the family of SVM methods with
well-known methods for signal interpolation, such as Yen’s,
Jacob’s, and minimax algorithms. The SVM methods show
good results in a wide range of scenarios.

The scheme of the paper is as follows. Section II briefly in-
troduces Yen’s algorithm and some improved (regularized) ver-
sions to work in ill-posed problems. Then, we present the for-
mulation of two novel SVM algorithms for signal interpolation.
Section III presents the simulation results when comparing with
Yen’s algorithm and with some representative simplified ver-
sions. Finally, in Section IV, discussion and conclusions are
given.

II. SVM FOR NONUNIFORM INTERPOLATION

As mentioned in Section I, a wide variety of methods have
been proposed for time series interpolation. Among all the
available algorithms for reconstruction of nonuniformly sam-
pled time series, the sinc kernel has received special attention,
and accordingly, this implies that a bandlimited nature of the
time series is assumed. We limit ourselves to briefly present
here the basics of Yen’s algorithm and some improved versions
[11], [28].

Let z(t) be a possibly not bandlimited signal corrupted by
Gaussian noise, and let {z,, = z(t,,),n = 1,..., N} be a set
of N nonuniformly sampled observations. Given {t,, x,;n =
1,..., N}, the interpolation problem consists of finding an ap-
proximating function =V (¢) that fits the observations as follows:

#(t) = (1) +e(t) = ) aisinc(oo(t — 1)) +e(t) - (D)

where sinc(t) = sin(t)/t; o9 = 7 /1o is the bandwidth of the
interpolating units (and in general has to be determined from
some a priori knowledge or search strategy); and e(t) repre-
sents the noise. The previous continuous time series model, after
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nonuniform sampling, is expressed as the following discrete
time model:

N
T, =2 +e, = Zaisinc(ag(tn —t;)) + en. 2)
i=1
An optimal bandlimited interpolation algorithm, in the least
squares (LS) sense, was first proposed by Yen [11]. The problem
can be expressed as the minimization of the quadratic loss func-
tion, given by

1 X N 2
3 Z (:En — Z a;sinc(og(t, — tz))) 3)
n=1 =1

which, in matrix notation, consists of minimizing

1
5|l — Sall? @)
where @ = [ay,...,an]T is the vector of model coefficients,
xz = [71,...,2x]%, and S is a square matrix whose elements
are
S(n,m) = sinc(og(tn — tm))- ®)

It can be seen that the solution vector is
-1
a=S8 =z (6)

This is a critically determined problem, as we have as many free
parameters as observations, and in the presence of noise this
yields an ill-posed problem [12]. In fact, in the presence of even
a low level of noise, small perturbations on the coefficient esti-
mations lead to large interpolation errors outside the observed
samples. To overcome this limitation, the regularization of the
quadratic loss has been proposed [11], thus leading to a different
problem that consists of minimizing

1 0
SNz — Sall? + 2 ol ™

where ¢ is a regularization parameter, which represents the
tradeoff between losses and smoothness of the solution. The
regularized solution is

a=(S*+6I""'Sx (8)

where I is the N x N identity matrix. Note that the bandwidth
(in both approaches), as well as the tradeoff parameter (in the
second approach), must be previously fixed.

Note that instead of using the sinc function as the interpo-
lation kernel for bandlimited interpolation, this formulation can
be extended to other nonbandlimited basis functions, such as the
Gaussian kernel, given by

_ _ 2
g(te = tn) = exp <M> ©)

202

where o is the kernel free parameter. Also, polynomial func-
tions can be readily used (see, e.g., [29], [30]), which have been
subsequently analyzed in terms of Information Theory princi-
ples. An excellent review can be found in [4].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 8, AUGUST 2007

A. SVM Robust Cost Function

In this section, we propose to use several SVM approaches
for estimating efficiently coefficients {a;} in signal model (2).
In the SVM framework for digital signal processing [21], the op-
timality criterion is a regularized and constrained version of the
regularized LS criterion. Residuals {e,, } account for the effect
of both noise and model approximation errors. In general, SVM
algorithms minimize a regularized cost function of the residuals,
usually the Vapnik’s e-insensitivity cost function [23]. Alterna-
tively, we introduce in the formulation the e-Huber robust cost
function [21], which is given by

0, len] < e

L (en) = %(|en| - 5)2
Cllen] — ) = 19C?  Jew] > ec.

e<l|en| <ec (10

Here, parameter ¢ is a nonnegative scalar that represents the in-
sensitivity to alow noise level, but more relevant for us, it can pro-
vide with a sparse solution, which can be a highly desirable prop-
erty in the model when working in test mode. Parameters v and C
represent the relevance of the residuals that are in the quadratic or
inthelinear costzone, respectively. Itcanbe easily seenthatec =
~C for a residual cost function with continuous first derivative.
By anadequate choice of free parameters e, -y, C, the e-Huber cost
function can be adapted to different kinds of noise while allowing
sparse solutions. The function to be minimized by SVM regres-
sion consists of a residual cost term plus a regularization term,
given by the Lo-norm of the model parameters [23].

For the signal model in (2), there are two possible SVM for-
mulations, which are described next. The first one consists of
using signal model (2) as the primal problem in the SVM for-
mulation. The second one consists of considering a generic non-
linear SVM regression, obtaining the SVM dual and solution
equations for a generic Mercer’s kernel, and finally introducing
the sinc kernel as a Mercer’s kernel for obtaining signal model
(2) in the dual solution.

B. Primal Signal Model Algorithm

The nonuniform signal model in (2) can be used within the
SVM linear framework [21]. In this case, the signal model to be
considered is given in (2). But instead of following the LS cri-
terion, we consider the minimization of the e-Huber robust cost
in (10), together with the quadratic norm of model coefficients
{a;}, which can be seen as a regularization term. This is, in this
first approach we minimize

N

1
> L (en) + 5 llall® (11
n=1

As usual in SVM linear framework, the optimization of this reg-
ularized robust cost can be achieved [21] by minimizing

N
1 1
52 0kt g > (G +E7)
k=1 v nel
2L
+C Z (n +&5) — 1C°| 2|

12
nels
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constrained to

N

Ty — Z agsinc(og(ty, — 1)) <e + &, (13)
=1
N

—z, + Z a;sinc(og(t, —t;)) <e + & (14)
i=1

§ny6n 20 (15)

forn = 1,...,N, and where &, £, are slack variables or
losses; I1 (I3) are the indices of residuals that are in the quadratic
(linear) cost zone; and |Io| is the cardinality of set I5. The solu-
tion to this optimization problem is given by the saddle point of
the following Lagrangian function:

it g Y (EHEDC T (6t E)

nel; nels

-1
N N

_ Z Qn <—xn + Z a;sinc(og(ty,
i=1

—t;)) +€+£n>

N

1
]\T
— E a <xn — E a;sinc(og(tn
n=1

=1

—ti))+6+£;i>

C?| L

(ma+55) 5

(16)

|Mz

where {an }({B )}) are the Lagrange multipliers corre-
sponding to (13) and (14) (to (15)). Lagrangian duality enables
the primal problem to be transformed into its dual one, by taking
the derivative of (16) with respect to the primal variables. It is
straightforward to show that if we denote

N
m) = Z sinc(og(

then the dual problem consists of maximizing

t, — tg))sinc(og(tn

—%(a - o) TT(a-a*) + (a— ")z — 1T (a + a*)

%( Tla+a'Ia*) (18)

constrained to 0 < al) < C, where a*) = [ag ),....ag\,)]
and 1 denotes a column vector of ones. This minimization
problem can be solved with quadratic programming techniques
[31]. Once dual coefficients {ag*)} are obtained, primal coeffi-
cients {a;} are given by

—Z

Note that coefficients are proportional to the empirical cross cor-
relation of the Lagrange multipliers and a set of sinc basis func-
tions, each centered in time instant £,, (see [21] for a related
discussion on generic primal signal models).

i) sinc(og(t; — t;)). (19)

C. Dual Signal Model Algorithm

A second SVM-based version of the interpolation function
can be obtained by starting with a conventional SVM nonlinear
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regression [23]. In this setting, given observations {z,, } at time
instants {t¢,,}, we map these time instants to a higher dimen-
sional (H, possibly infinity) feature space H by using a non-
linear transformation ¢, this is, we consider ¢ : R — “H that
maps t € R — ¢(t) € H, where a linear approximation to the
data can properly fit the observations as follows:

Tn =) + en = (w, (1)) + en (20)
forn =1,...,N.
The optimization criterion is in this case
N
€ 1 2
> Lo (en) + ]l 1)
n=1

Note that in this case the regularization term is not referred to
the amplitude of the base functions of the model as in (11), but
rather to the regression vector in the RKHS. The primal problem
consists now of minimizing

1 H wz—i-iz (€2+€*2)
k=1 nely
* 702|IZ|
+CY (Gt -—5— @)
nels
constrained to
—(w, ¢(tn)) <e+ & (23)
&, & 2 0. (25)

Again, a Lagrange functional can be stated by following a sim-
ilar procedure to the precedent section. In brief, by taking the
gradient, we now obtain

=3 (an — ) ().

After substitution of w into the Lagrangian and some simple
manipulations, the following Gram matrix can be identified:

(26)

G(k,m) = ($(tx), $(tm)) 27

= K(tg,tm)
where K (t1,t,,) is a Mercer’s kernel, which allows to obviate
the explicit knowledge of nonlinear mapping ¢(-) [23]. The dual
problem consists now of maximizing

1

—E(a -a)'Gla—a*)+ (a—a")Tz—

—e1T(a+a*) - % (a"Ta+ a*Ia*) (28)

constrained to 0 < a® < C. Note the similarity with the
dual problem of the primal signal model formulation in (18),
in which T is replaced with kernel matrix G. The final solution
is expressed as

N

1:1

K(ti tn). (29)
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As usual in the SVM framework, by setting ¢ > 0, we obtain
that only a subset of the Lagrange multipliers will be nonzero,
thus, providing with a sparse solution. The associated samples
are called support vectors (SVs) and represent a set of very rele-
vant samples in the data distribution, as the solution is built only
in terms of them. Moreover, we can define at this point

K(tg, tn) = sinc(og(tx — tn)) (30)
which can be proven to be a Mercer’s kernel (see, e.g., [32].
We will call this choice the sinc Mercer’s kernel. Therefore,
when using the sinc Mercer’s kernel, (29) is the nonuniform
interpolation model given in (2) with a; = o — .

Note that other Mercer’s kernels could be easily used with
this approach. Function (9) can be expressed as a valid Mercer’s
kernel by simply defining it as

—|te — tnl?
Kt = s (L 2F)

20° GD

thus giving a nonbandlimited (kernel-based) Gaussian interpo-
lator.

As usual in the SVM framework, the free parameter of the
kernel and the free parameters of the cost function have to be
fixed by some a priori knowledge of the problem, or by using
some validation set of observations. This issue is analyzed in the
experiments section.

Note that there are two kinds of free parameters in the SVM
algorithms: kernel parameter o and residual cost function pa-
rameters (g, 6, C'). In SVM, it is not possible to give general and
closed expressions for the mentioned free parameters, but rather
they have to be either searched by using a validation set, or fixed
according to some a priori knowledge. However, the other in-
terpolation algorithms described here have also free parameters
to be tuned, as (o9, ¢ for Yen’s algorithm in (8), which has also
to be fixed from some a priori knowledge of the problem. We
will see in the simulations that SVM interpolation algorithms
are robust to moderate deviations of the free parameters from
the optimum ones, which is a very convenient property for a
signal interpolation algorithm.

D. Comparison Between Primal and Dual Signal Models

In order to qualitatively compare the sinc kernel SVM primal
and dual signal models for nonuniform interpolation, note the
following expansion of the solution for the primal signal model
approach:

]\T
T, = Z a;sinc(og(t, — t;))
i=1

= (Z (o — a7) sine(oo(t; - tm)

i=1 \r=1

x sinc(og(tn, — ti)). (32)
Comparison between (32) and (29) reveals that these are quite
different approaches using SVM for solving a similar signal pro-
cessing problem. For the primal signal model formulation, and
according to (19), limiting the value of C' will prevent these co-
efficients from an uncontrolled growing (regularization effect).
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For the dual signal model formulation, the SRM principle im-
plicit in the SVM formalism [23] will lead to a reduced number
of nonzero coefficients, thus providing with a desirable sparse
solution. Also, in this case, it is easy to see that coefficients are
bounded.

III. SIMULATIONS AND RESULTS

In this section, we evaluate the performance of the three pro-
posed SVM-based signal interpolators, and they are compared
with four standard interpolation techniques.

A. Interpolation Algorithms for Benchmarking

Many nonoptimal interpolation algorithms have been pro-
posed in the literature. The Jacobian weighting [28] uses the
following direct interpolation equation:

z(t) = ' (t) +e(t) = Z bixsinc(oo(t — t;)) + e(t) (33)

i=1

where coefficients b; are chosen to be the sample spacings, i.e.,
b; = t;+1 — t;, which corresponds to a Riemann sum approxi-
mation to the following integral identity:

+o0
o(t) = / (F)sinc(oo(t — 7))dr (34)

— 00

if we assume that oy is the true bandwidth of z(¢). This algo-
rithm has poor performance in interpolation, but an extremely
reduced computation burden.

Another suboptimal (but rather improved) approach was pro-
posed in [8], where a generalization of the sinc kernel interpo-
lator is presented. The model relies on a minimax optimality
criterion as an approximate design strategy, and it yields the fol-
lowing expression for the coefficients:

a; = 010 (Z sinc?(oo(t; — tn))) .

Both the performance and the computational burden of this ap-
proach are between Yen’s and Jacobian sinc kernel interpola-
tors. However, all these approaches exhibit some limitations,
such as poor performance in low signal-to-noise scenarios, or in
the presence of non-Gaussian noise (in this last case, as a direct
consequence of the use of quadratic loss function). In addition,
these methods result in nonsparse solutions. These limitations
can be alleviated by accommodating the SVM formulation to
the nonuniform sampling problem. In Section III-B, two ver-
satile SVM-based algorithms for nonuniformly sampled, noisy
time series interpolation, are introduced.

Therefore, the following signal interpolators are considered:

1) Yen’s interpolator without regularization (Y1);

2) Yen’s interpolator with regularization (Y2);

3) sinc interpolator with uniform weighting (S1);

4) sinc interpolator with Jacobian weighting (S2);

5) sinc interpolator with minimax weighting (S3);

6) primal signal model SVM with sinc kernel (SVM-P);

7) dual signal model SVM with sinc kernel (SVM-D);

8) dual signal model SVM with RBF kernel (SVM-R).

(35)
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TABLE 1
S/E RATIOS (MEAN + STD) FOR GAUSSIAN AND IMPULSE NOISE

‘ H Gaussian Noise H Impulse Noise ‘

| Method || Nonoise | 40aB | 30aB | 20dB | 10aB | 154B | 10aB | saB | 0aB | -5aB |
Y1 475441 | 387£17 | 296413 | 199412 | 9.9+1.1 || 189+1.6 | 174423 | 149432 | 11.4+4.1 | 7.5+48
Y2 53.4£1.9 | 39.5+1.4 | 29813 | 20.141.2 | 10.6+1.2 || 192+1.6 | 17.8422 | 15343.1 | 12.143.9 | 8.5+4.3
s1 05407 | -0.5£0.7 | -0.5£0.7 | -0.6£0.8 | -13+1.0 || -0.620.8 | -0.7+08 | -0.8£0.9 | -12412 | -2.1+18
s2 159430 | 15943.0 | 157+2.9 | 145422 | 9.8+1.3 || 14522 | 13.942.0 | 12.6+22 | 105428 | 7.6+3.6
S3 169+2.9 | 169429 | 167428 | 154422 | 102413 || 153420 | 147420 | 133423 | 11.0+£3.0 | 7.9+37
SVM-P || 49.1£43 | 39.121.3 | 20.9+1.2 | 205411 | 123+1.6 || 19.8+1.5 | 184420 | 16129 | 13343.6 | 11.0+3.9
SVM-D || 502432 | 39.5+1.3 | 20.9+1.2 | 204£1.1 | 124216 || 19.7£1.5 | 18.4+2.0 | 16.0+£2.9 | 13.0£3.5 | 10.8+3.9
SVM-R || 49814 | 39.6+1.1 | 30.0+1.2 | 21413 | 135220 || 20.7+1.8 | 192424 | 167432 | 13.943.7 | 11.8+3.9

B. Training and Validation Signals

In order to compare all these methods, simulations with
known solutions were conducted. Our experimental setup
is adapted from [8], where a set of signals with stochastic
bandlimited spectra were generated, but here we used a signal
with deterministic bandlimited spectra instead. In particular,
the recovery of a bandlimited signal with relatively lower
energy on its high frequency components of the spectrum was
chosen, aiming to explore the effect that regularization could
have on the details of the signal. The set of signals consisted
of the sum of two squared sinc functions, one of them being
a lower level, amplitude modulated version of the baseband
component, i.e.,

2(t) = sinc? (xt) <1 + %sin(Zw ft)) Fe®)  (36)

where f = 0.4 Hz and e(¢) is additive noise. Note that, in spite
of the (apparently) structural simplicity of (36), the function
cannot be trivially adjusted by a weighted combination of sinc
bases. This function was used in a number of simulations, but
only the most representative cases are reported in this section.

A set of L samples were used with averaged sampling interval
T[s]. The sampling instants were obtained by adding uniform
noise, in the range [—0.17, 0.17], to equally spaced time points
{tr, = KT}E_,. Different values of L were taken, changing ac-
cordingly averaged sampling interval T, i.e., when L = m X
32 samples were considered, the averaged sampling interval
was changed to T = 0.5/m s, with m = 1,2, 3, 4. Different
signal-to-noise ratios (SNRs) were explored (no noise, 40, 30,
20, and 10 dB). Sampling intervals falling outside [0, LT] were
wrapped inside. A total of 100 realizations were generated for
each set of experiments.

The performance of the interpolators was measured by
building a validation set consisting of a noise-free, uniformly
sampled version of the output signal with sampling interval
T /16, as an approximation to the continuous time signal, and
then comparing it with the predicted interpolator estimations

at the same time instants. The signal to error (S/E) ratio was
computed in decibels as

(S) 101o
) = 210
E) s

in the training set. Means and standard deviations of S/E were
averaged over 100 realizations.

E{(gcgy)?}

E{e) &7

C. Tuning the Free Parameters

Four free parameters have to be tuned in SVM algorithms,
which are cost function parameters (e, C, ), and kernel param-
eter o (or equivalently, time duration 7). These free parame-
ters need to be a priori fixed, either by theoretical considerations
or by cross-validation search with an additional validation data
set.

The tuning of the free parameters is, undoubtedly, the most
critical issue for all methods in this problem. However, several
criteria are available in the SVM literature to tune the free pa-
rameters when little or no knowledge about the problem is avail-
able [33]-[37]. Note that, in general, oy and -y can be optimized
by using the same methodology as in [34], but such an analysis
is beyond the scope of the present paper.

In this paper, and for each developed interpolator, the optimal
free parameters were searched according to the reconstruction
on the validation set. For SVM interpolators, cost function pa-
rameters and kernel parameter were optimally adjusted. For the
other algorithms, the best kernel width was obtained, and for
Y2, the best regularization parameter was determined by using
the available validation set.

D. Gaussian Noise and SNR

The left-hand side of Table I shows the performance of the al-
gorithms in the presence of additive, Gaussian noise, as a func-
tion of SNR. The poorest performance is noticeably exhibited
by S1, and some improvement is observed with S2 and S3. Y1
yields a good performance only for low noise levels, whereas Y2
shows a good performance for all noise levels, according to its
theoretical optimality (from a ML point of view) for Gaussian
noise. All the SVM approaches remain close to this optimum
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TABLE II
RATE [%] OF SVs (MEAN £ STD) WIiTH SNR

| Method | No noise | 40dB 30dB 20dB 10dB
SVM-P | 9654108 | 96.0+143 | 993450 | 92.8+18.8 | 64.1+18.6
SVM-D | 93.9+17.8 | 953+14.4 | 95.9+14.2 | 89.1422.2 | 59.3+17.3
SVM-R || 100.0£03 | 99.9:00.7 | 993425 | 71.8+16.8 | 49.5+14.9
o °. Vatdaion Sina ) -y TABLE III
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Fig. 1. Examples of interpolation in the time (a,c) and frequency (b,d) domains,
for Gaussian noise SNR = 20 dB, L = 32 samples) (a,b) and BG noise
(SNR = 20 dB, SIR = 0 dB, L = 32 samples) (c,d).

for high and medium SNR, and even improve around 2 dB for
very low SNR.

The top panels in Fig. 1 show a representative example of a
modulated sinc signal with SNR = 20 dB, which constitutes a
moderate yet more realistic noise level. The interpolation in the
time domain is shown to provide a better approximation to the
validation signal for Y2 (theoretical optimum) and for the SVM-
based methods. Hence, SVM interpolators can yield close-to-
optimum performance in the presence of Gaussian noise.

E. Rate of Support Vectors

Sparseness in SVM-based interpolators was also studied as a
function of both SNR and signal length, as shown in Table II and
Table III. All the SVM methods clearly tend to yield more sparse
solutions (in average) with decreasing SNR and with increasing
signal lengths. For almost all the situations, the most and the

RATE [%] OF SVs (MEAN £ STD) WITH NUMBER OF SAMPLES

| Method || 16 32 64 128

SVM-P || 972478 | 9024212 | 88.6+26.0 | 76.6:+38.8
SVM-D | 93.9+12.9 | 85.1425.5 | 81.7433.0 | 72.3+40.9
SVM-R || 88.7+13.8 | 69.7+17.5 | 48.6£12.0 | 20.6+11.8

least sparse solutions are provided by SVM-R (up to 40% of SV)
and SVM-P, respectively. This is an interesting property, which
in general is not yielded by conventional Information Theory
interpolators or by other previous kernel interpolators.

Fig. 2 shows the sparseness (rate of support vectors SVs[%])
and the S/E obtained as a function of e(SNR = 20 dB). With
low number of samples (L = 32), there is a range of values
of ¢ for which the sparseness can be reduced without signifi-
cantly modifying the S/E. With increased number of samples
(L = 128), there is a clear optimum value of ¢ for SVM-D and
SVM-R (dual formulations), for which a notably sparse solu-
tion is obtained. Fig. 3 shows two examples (for L = 32 and
L = 128) of the obtained coefficients for the optimum e. In-
terestingly, for SVM-P dual coefficients the sparseness is lower,
but coefficients a;, which are obtained by means of dual coef-
ficients, trend to be more sparse than dual coefficients per se.
The rate of SVs for L = 128 samples is dramatically reduced
for SVM-R when compared to SVM-D. The high values of stan-
dard deviations was due to the presence of bimodality in the dis-
tribution of the rate of SVs across experiments, specially present
in SVM-P and SVM-D (not shown).

F. Analysis of v and C

A relevant stage when using SVM algorithms is the selection
of the free parameters of the cost function. We studied the effect
of changing v and C for L. = 32 samples, and the results are
shown in Fig. 4. In average, values of C in (10, 1000) yield good
performance, but higher values produce high variance in the SE,
and v in (1075, 10~2) are appropriate, while lower values may
produce numerical problems due to the lack of regularization.

G. Impulse Noise

In order to test the robustness against impulse noise, similar
experiments were conducted. Impulse noise was generated with
the Bernoulli-Gaussian (BG) function [38] nfG = v, \, Where
vy, 1s a random process with Gaussian distribution and power
0%, and where )\, is a random process with probability

j22 A=1

R4&J:{1—p A=0. ©%8)
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Fig. 2. Sparseness (upper pannels) and S/E (lower pannels) as a function of ¢,
for signals with (a) 32 samples, and (b) 128 samples.

Accordingly, BG noise with p = 0.1 was added to the train
signals, with different rates of signal-to-impulse ratio (SIR), de-
fined as

o -7}

SIR.5 = 101log;, -
B

(39)

0BG

where n$ is the added Gaussian noise.

The right-hand side of Table I shows the comparison for
all the methods in the considered scenario of additive impulse
noise. As expected, the SVM algorithms outperform the Y2
algorithm for significantly low SIR values, given that Y2 is no
longer the optimum with this noise. Though a fair comparison
should take into account M-estimates [39] and its versions for
Y2 algorithm, M-estimates can be seen a particular case of
SVM with regularized e-Huber cost function by just taking
e = 0 [21], which was already considered in the search of the
free parameters. Tables IV and V show the sparseness of the
solution as a function of SIR and of the number of samples.
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Fig.3. (a) Example of sparseness in SVM coefficients for a signal with L = 32
samples. From top to bottom: a; of SVM-P, a; — « of SVM-P, SVM-D and
SVM-R. (b) The same for an example with L = 128 samples.

The behavior of SVM algorithms in terms of sparseness in the
presence of BG noise was similar than in Gaussian noise, but a
slight reduction in sparseness could be observed in terms of a
comparable number of samples. Bottom panel of Fig. 1 shows
an example of signal reconstruction in BG noise, both in the
time and in the frequency domain. Note that SVM algorithms
obtain a remarkable improved reconstruction at the high-ampli-
tude spike locations, at the expense of a distorting effect in the
band close to the Nyquist frequency of the signal. On the other
hand, Y2 algorithm uses a width that often invades the whole
spectrum.

IV. CONCLUSION

A new approach to the problem of interpolation of nonuni-
formly sampled signals has been presented, based on the SVM
signal processing framework. Not only the sinc kernel, but also
the RBF kernel, popular in the SVM literature, have been shown
to be close to Yen’s optimal in the presence of Gaussian noise,
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TABLE IV
RATE [%] OF SVs (MEAN + STD) WITH SIR IN BG NOISE
| Method | 15dB 10dB 5dB 0dB -5dB
SVM-P || 87.2422.3 | 79.5£26.0 | 75.6£25.6 | 78.9£24.6 | 85.24+23.7
SVM-D || 79.6+27.0 | 74.5£27.4 | 67.1£26.9 | 67.5£27.2 | 81.3£27.1
SVM-R || 67.5£17.1 | 63.7£17.4 | 63.2£20.1 | 71.3£25.3 | 81.7£26.1
G0 B0 0O EESEEE S TABLE V
_ 3 “9"9'»3-"2-9"»* '-?-'91' 2-R:Q:09 21"0.,,6. RATE [%] OF SVS (MEAN = STD) WiTH L IN BG NoIsE (SIR = 0 dB)
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Fig. 4. Sparseness (up) and S/E (down), for L = 32 samples, as a function of
C and 7.

and robust to low number of available samples, outperforming
other precedent approximations. Besides, sparse solutions can
be obtained. The robustness of SVM algorithms when impulse
noise is present has also been explored, with very promising
results.

different ways. On the one hand, the SVM algorithm obtained
from a primal signal model provides with a robust, yet indirect,
estimation of the coefficients, and it is closer in its nature to
YenSs optimal formulation. It can be shown that primal model
SVM solution is Y2 for e = 0 and C' — +o0. For finite values
of the parameters and for Gaussian noise, the SVM is biased,
while Yen’s solution is the optimal unbiased solution through
the use of the Maximum Likelihood cost function if the sample
size is large enough. If the sample size is small, Yen’s solu-
tion needs to be regularized, thus becoming biased. On the other
hand, dual SVM algorithms, arising from dual signal model for-
mulations, are in fact another form of nonlinear SVM-based re-
gression, and hence, the coefficients are directly obtained as the
Lagrange multipliers from the SRM principle.

Some important conclusions can be extracted by comparing
the proposed algorithms SVM-D and SVM-R. First, both algo-
rithms produce similar, and noticeably better results than the
rest of the standard interpolators in Gaussian or impulse noise
environments. Second, a certain tradeoff between sparsity and
S/E is observed. In the case of Gaussian noise, the SVM-D out-
performs the SVM-R for moderate noise levels (this is, SNR
greater than 30 dB), but when higher noise levels are introduced
(SNR between 10 and 20 dB), a better interpolated signal is
obtained with the SVM-R algorithm. In the case of BG noise,
one observes the opposite behavior of the algorithms, thus sug-
gesting that SVM-R is more appropriate for low BG noise levels
than the SVM-D algorithm. Third, when the number of training
samples was varied, much better results were appreciated for
the SVM-R algorithm, specially significant as this number in-
creases. Finally, it is worth noting that there is a clear tradeoff
between the sparsity and the S/E curves when comparing primal
and dual models. However, and more important, is the fact that
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both approaches reveal good robustness capabilities to the se-
lection of the free parameters, and thus good results can be ob-
tained without the need of fine-tuning these parameters.

In conclusion, and given the aforementioned tradeoffs, we
can state the algorithm to be used (primal signal model or dual
signal model, and RBF or sinc kernel) should be chosen ac-
cording to the application requirements, such as the amount and
nature of noise, or the number of available training samples. Our
future research is tied to the study of the sparseness, regulariza-
tion and robustness capabilities of the proposed methods in real
applications of SAR and biomedical signals.
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