
IEEE SIGNAL PROCESSING LETTERS, VOL. 13, NO. 7, JULY 2006 397

Support Vector Machines for Robust
Channel Estimation in OFDM

M. Julia Fernández-Getino García, Member, IEEE, José Luis Rojo-Álvarez, Member, IEEE,
Felipe Alonso-Atienza, Student Member, IEEE, and Manel Martínez-Ramón, Senior Member, IEEE

Abstract—A new support vector machine (SVM) algorithm for
coherent robust demodulation in orthogonal frequency-division
multiplexing (OFDM) systems is proposed. We present a complex
regression SVM formulation specifically adapted to a pilots-based
OFDM signal. This novel proposal provides a simpler scheme than
an SVM classification method. The feasibility of our approach is
substantiated by computer simulation results obtained for IEEE
802.16 broadband fixed wireless channel models. These experi-
ments allow to scrutinize the performance of the OFDM-SVM
system and the suitability of the -Huber cost function, in the
presence of non-Gaussian impulse noise interfering with OFDM
pilot symbols.

Index Terms—Channel estimation, complex, orthogonal fre-
quency-division multiplexing (OFDM), robust estimation, support
vector machine (SVM).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing (OFDM)
is a very attractive technique for high bit-rate transmis-

sion in wireless environments [1]. Data symbols are frequency
multiplexed with orthogonal subcarriers to minimize the effects
of multipath spread. Thus, a frequency-selective channel is
transformed into a set of parallel flat-fading Gaussian sub-
channels, which is what makes equalization a simple task.
Moreover, this transmission technique can be efficiently im-
plemented via IDFT/DFT operations. Channel estimation is
usually carried out based on pilot symbols using least squares
(LS) [2]. However, in a practical environment where impulse
noise can be present, this method may not be effective. To our
knowledge, nonlinear channels with non-Gaussian noise have
not been studied yet in OFDM systems.

The use of support vector machines (SVM) has already
been proposed to solve a variety of digital communications
problems. The decision feedback equalizer [3], [4] and adaptive
multiuser detector for direct sequence code division multiple
access (CDMA) signals in multipath channels [5] are addressed
by means of binary SVM nonlinear classifiers. In [6], signal
equalization and detection for a multicarrier (MC)-CDMA
system are based on an SVM linear classification algorithm.
Nonlinear channel estimation based on SVM multiregression
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for multiple-input multiple-output systems has also been scruti-
nized [7]. In all these applications, SVM techniques outperform
classical methods.

We propose a SVM robust version for channel estimation that
is specifically adapted to OFDM data structure. There are two
main novelties in our proposal. First, the use of complex regres-
sion in SVM formulation provides us with a simpler scheme
than describing OFDM signal with either multilevel or nested
binary SVM classification algorithms. Second, the adequacy of
free parameters in -Huber robust cost function [8] is investi-
gated in the presence of impulse noise. Although robustness of
some digital communication receivers against impulse noise has
been examined by using -estimates [9], [10], there is no pre-
vious work about the performance of SVM algorithms in digital
communications under this condition. For simplicity, a linear
dispersive channel with non-Gaussian noise is analyzed here.
The extension of the proposed linear OFDM-SVM scheme to
nonlinear scenarios can be easily introduced by using Mercer’s
kernels in a similar way as proposed for other communication
schemes [4].

In Section II, the OFDM system and impulse noise model are
described. Coherent demodulation of OFDM signals with SVM
is addressed in Section III. In Section IV, simulation results are
presented, and conclusions are drawn in Section V.

II. OFDM MODEL

The discrete-time received OFDM signal for a system with
subcarriers is

(1)

where are time-domain samples before
DFT transformation, is the channel’s frequency response
at the th frequency, is the complex symbol transmitted
at the th subcarrier, and is the complex white Gaussian
noise process . The impulse noise is modeled as a
Bernoulli–Gaussian process, i.e., the product of a real Bernoulli
process with and a complex Gaussian
process [10]. Then, residual noise at the receiver
side is given by the sum of both terms .

In coherent OFDM systems, pilot symbols are usually in-
serted for channel estimation purposes. Then, the channel’s fre-
quency response can be first estimated over a subset of sub-
carriers, with cardinality , and then interpolated over
the remaining subcarriers by using, for example,

1070-9908/$20.00 © 2006 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 12:10 from IEEE Xplore.  Restrictions apply.



398 IEEE SIGNAL PROCESSING LETTERS, VOL. 13, NO. 7, JULY 2006

DFT-based techniques with zero-padding in the time domain
[2]. Now, the OFDM system can be expressed as

(2)

where and are, respectively, the complex pilot or data
symbol transmitted at the th subcarrier. It is well known that
if the channel impulse response has a maximum of resolvable
paths (and hence of degrees of freedom), then must be at
least equal to [11].

III. OFDM-SVM COHERENT DEMODULATOR

The proposed signal model for OFDM-SVM is as follows:

(3)

where contains the
residual noise plus the term due to data symbols. Here, these
unknown symbols carrying information will be considered
as noise during the training phases. Channel estimation via
LS cost function is no longer the maximum likelihood (ML)
criterion when dealing with this sort of noise [12]. In order to
improve the performance of the estimation algorithm, a robust
cost function must be introduced.

SVM algorithms minimize a regularized cost function of the
residuals. In [8], the -Huber cost function is used, given by

(4)

where , is the insensitive parameter, and and
control the trade-off between the regularization and the losses.
Three different regions allow to deal with different kinds of
noise: -insensitive zone ignores errors lower than ; quadratic
cost zone uses the -norm of errors, which is appropriate for
Gaussian noise; and linear cost zone limits the effect of sub-
Gaussian noise. Note that (4) represents Vapnik -insensitive
cost function when is small enough and Huber cost func-
tion when . Here, for complex , we define

, where and denote real and
imaginary parts, respectively. The primal problem can be stated
as minimizing

(5)

constrained to

(6)

(7)

(8)

(9)

(10)

for , where pairs of slack variables are in-
troduced for both real and imaginary residuals;
superscript and no superscript stand for positive and negative
components of residuals, respectively; and are
the set of samples for which real (imaginary) parts of the resid-
uals are in the quadratic-linear cost zone.

The derivation of a similar dual problem can be found in
[8], and only the new steps that are specific to our proposal
are pointed out next. In brief, the primal-dual functional is ob-
tained by introducing the constraints into the primal functional
by means of Lagrange multipliers , , ,

, for the real (subscript ) and imaginary (subscript
) parts of the residuals. By making zero the primal-dual

functional gradient with respect to , we have the following
expression for channel estimated values at pilot positions:

(11)

where . For notation, we
define the following column vector:

(12)

and the following Gram matrix as . Now,
by placing optimal solution (11) into the primal-dual functional
and grouping terms, a compact form of the functional problem
can be stated in vector form, which consists of maximizing

(13)
constrained to , , , ,
where ; , are the identity matrix and
the all-ones column vector, respectively; is the vector con-
taining the corresponding Lagrange multipliers, with the other
subsets being similarly represented; and .
Note that (13) is a quadratic form and, thus, real-valued, and it
represents a natural extension of the dual functional in SVM real
regression for complex-valued problems. The channel values at
pilot positions (11) can be obtained by optimizing (13) with re-
spect to , , , and then substituting
into (11).

IV. SIMULATION RESULTS

In order to test the performance of the OFDM-SVM scheme,
a scenario for IEEE 802.16 fixed Broadband Wireless Access
Standard has been considered [13]. In second-generation sys-
tems for this type of application, non-line-of-sight (NLOS) con-
ditions are present. To simulate this environment, we use the
Modified Stanford University Interim SUI-3 channel model for

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 12:10 from IEEE Xplore.  Restrictions apply.



GARCÍA et al.: SUPPORT VECTOR MACHINES FOR ROBUST CHANNEL ESTIMATION IN OFDM 399

TABLE I
SUI-3 CHANNEL MODEL PARAMETERS FOR MULTIPATH FADING

omnidirectional antennas, with taps, a maximum delay
spread of , and maximum Doppler frequency

Hz [13]. The main parameters of this channel are summa-
rized in Table I. It can be observed that the channel exhibits an
rms delay spread of . Also, it must be noticed
that -factors are given in linear values and not in dB values;
values shown in Table I mean that 90% of the cell locations
have -factors greater than or equal to the K-factor specified.
Finally, the specified Doppler is the maximum frequency param-
eter of the round-shaped spectrum. Additionally, the SUI-3
channel models specify a normalization factor equal to 1.5113
dB, which must be added to each tap power to get 0 dB as the
total mean power.

Subsequent distortion as impulse noise is modeled with a
Bernoulli–Gaussian process . Note that, due to the
short length in samples of the preamble in our OFDM system,
there is a low probability of a spike falling into it.

This OFDM system consists of subcarriers con-
veying QPSK symbols. We consider a packet-based transmis-
sion, where each packet consists of a header at the beginning of
the packet with a known training sequence or preamble to carry
out channel estimation, followed by a certain number
of OFDM data symbols. At the preamble, there are two OFDM
symbols with pilot subcarriers with randomly gener-
ated symbols. Each OFDM symbol is appended a cyclic prefix
to overcome the delay spread of the channel. For trans-
mission, we have chosen a channel bandwidth of MHz.
Since we sample at Nyquist rate, this yields a sampling interval

; this means a length for the cyclic prefix
of two samples. The total length of each OFDM symbol

becomes samples. This cyclic prefix is removed at
the receiver side, before performing any demodulation or de-
tection operation. After the estimation (with either SVM or LS)
of channel coefficients at pilot positions , we use them to
compute the interpolation of the channel. Next, we perform zero
forcing (ZF) equalization using the interpolated channel. Detec-
tion is carried out with a hard-decision slicer over the equalized
data.

Channel estimation for the coherent demodulation of this
OFDM system is performed with SVM algorithm. For compar-
ison purposes, LS channel estimates in the frequency domain
(after DFT demodulation) are simultaneously obtained in
all cases. In both algorithms, a DFT-based technique with
zero-padding in the time domain is used to interpolate the
channel’s frequency response for data subcarrier positions.

The signal-to-impulse ratio (SIR) is defined as SIR
, and it ranged from 21 to 21 dB.

The bit-error rate (BER) and the mean-squared error (MSE)

Fig. 1. Performance of OFDM-SVM versus LS. (a) BER performance as a
function of SIR. (b) MSE performance as a function of SIR.

improvements that can be attained with SVM are represented
in Fig. 1. For high SIR values, a performance similar to LS can
be obtained, whereas for low SIR values, SVM outperforms LS
by properly choosing , , and .

Given that the choice of the free parameters in SVM is often
a key issue, we studied the performance variation in the system
due to changes in their values. Therefore, they were explored
according to , , , and at
40 points per interval. Each exploration consisted of 500 realiza-
tions. Note that two of the most common robust cost functions
(regularized LS and Huber cost) are implicit in this SVM ap-
proach.

The difference in BER between SVM and LS has
been analyzed, given the definition of BER

BER BER , in order to easily detect working
zones where SVM works better BER , similar

BER or worse BER than LS. Fig. 2
shows that the BER performance of the SVM algorithm can be
superior to LS for properly chosen values of the free parameters
and that there is a wide range of values for it. For instance,
good performance remains for values of C ranging from 1 to
100 and for within a range from to .

Therefore, a reasonable first choice of the free parameters can
be done, and the performance of the algorithm will not be highly
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Fig. 2. Performance of OFDM-SVM with free parameters, compared to LS in
terms of �log10(BER). (a) SIR versus C . (b) SIR versus �C . (c) SIR versus ".

affected by moderate changes in the conditions. The choice of
depends on the power of non-Gaussian noise. Taking into

account that thermal noise is mainly a zero-mean, low amplitude
contribution, and that noise impulses are high-amplitude spikes,

must be adjusted to produce a quadratic cost around a rough
estimate of the thermal noise, and linear otherwise. For almost
all noise values, must be small and linearly growing with the
thermal noise. These results are coherent with [14] and [15],
in which two similar rules for the choice of these parameters
suggest that a near-optimal value of in SVM regressors must
be proportional to the power of thermal noise.

V. CONCLUSION

A new SVM algorithm for OFDM coherent demodulation
has been proposed. Rather than a classification approach,
our formulation is based on a complex regression expres-
sion specifically developed for pilot-based OFDM systems.
Simulations have confirmed the capabilities of OFDM-SVM
in the presence of impulse noise interfering with the pilot
symbols. The proposal allows a simple implementation and a
straightforward choice of free parameters, and its cost function
is robust against several different noise scenarios. This novel
scheme turns out to be a framework for the development of
new applications of the SVM technique in OFDM systems, and
further problem statements of OFDM-SVM can be explored
by taking into account the temporal-spectral relationship of the
OFDM signal. The well-known Mercer theorem will provide
a natural nonlinear extension of this algorithm (for instance,
using radial basis functions). This may lead to a significant
benefit for OFDM communications in those scenarios in which
nonlinear distortion is present.
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