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a b s t r a c t

We present a new approach for the reconstruction of ischemic regions from only a
few non-contact intracardiac recordings. Hence, it is desirable to exploit the spatio-
temporal correlations contained in the data. To this end, we incorporate a time-dependent
monodomain model of the cardiac electric activity into the inversion scheme. In order
to take into account the electrophysiological alterations of ischemic regions, we also
introduce appropriate variations of the model parameters. This approach allows us
to perform the reconstruction of the affected regions successfully using only a few
recording sites. The reconstruction process is based on level set techniques. Our numerical
experiments in a bi-dimensional model of cardiac tissue validate our approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling plays an important role in the research of the electrophysiological behavior of the human
heart [1–3]. For example, it is essential in the development of procedures to reconstruct its electrical activity from voltage
measurements, i.e., to solve the, so called, inverse problem of electrocardiography (IPE) [4,5]. An accurate solution to the
IPE can provide important information for the diagnosis of cardiac electrical conduction defects and other cardiac related
health issues, such as ischemic heart disease, produced by the lack of blood supplied by the coronary arteries to the heart
muscle.

We can distinguish different scenarios in IPE depending on where the electrodes are placed. In a daily routine, clinicians
use body surface electrocardiograms (ECGs) to diagnose the health of a patient’s heart. Also, they can use non-contact
electrodes inside a heart cavity to register intracardiac electrograms (EGMs) [6,7]. In this paper, we will consider the latter
case.We seek to retrieve somemodel parameters fromEGMs. These parameterswill give us information about tissue regions
affected by ischemia.

From a mathematical point of view, the IPE is ill-posed due, in part, to smoothing and attenuation of the cardiac signal
during its propagation in the medium between the heart muscle and the electrodes [8,5]. To mitigate these difficulties, an
extensive number of regularization techniques have been proposed in the literature, mostly of the Tikhonov–Philips type
[4,9,10]. However, in these works each time instant is treated independently from the others, thus ignoring the spatio-
temporal correlation information contained in the measurements. To overcome this problem, several spatio-temporal
regularization methods have been proposed including the Twomey technique [11], simultaneous regularization over all
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considered time instants [12], simultaneous imposition of spatial and temporal constraints [13], and Kalman filtering [14].
Some of these techniques have been complemented with model-based approaches imposing a parameterized function to
the solution [15–19]. The IPE has also been analyzed in terms of statistical criteria [20,21]. More recently, Ghost et al. have
explored the performance of Tikhonov–Philips regularization tools using the one-norm constraint [22].

In this paper, we follow a different approach. We combine a bi-dimensional model of cardiac propagation and a model
of electrode recording inside the heart. The knowledge of the cardiac excitation process, given by the cardiac propagation
model, is introduced in the inverse problem formulation allowing us to exploit the spatio-temporal correlation contained
in the EGMs. Hence, only a few electrodes are needed to reconstruct the regions of interest successfully. To incorporate
an ischemia, we allow two parameters of the bioelectrical model to have different values inside and outside the damaged
tissue. Several numerical experiments validate our approach.

To solve the IPE, we propose a shape-based approach and we apply level-set techniques. Level-set techniques were
originally introduced for computational front propagation in [23], and for solving inverse problems in [24]. Since then, they
have been widely used for solving inverse problems in different applications with great success [25–27] (see [28] for a
recent overview). Also, a level-set formulation has been proposed in [29] to identify ischemic regions from body surface
measurements. They use a stationary model to represent the resting potentials on the heart.

The paper is organized as follows. In Section 2, we present the mathematical model used for describing the cardiac
electrical activity and the associated intracardiac recordings. In Section 3, we formulate our approach for the reconstruction
of the ischemic regions, andwe detail the inversion algorithm. Section 4 contains the numerical experiments using synthetic
data. Finally, the conclusions are summarized in Section 5.

2. Mathematical model

In this section, we present the mathematical model relating the cardiac sources to intracardiac measurements which
accounts for descriptions of single cell dynamics, bioelectric propagation, ischemic conditions and intracardiac potentials.

2.1. Bioelectric cardiac source model

Cardiac cell dynamics aremodeled here according to the two-current ionic model defined byMitchell and Schaeffer [30].
This phenomenological model only incorporates an inward current (representing sodium and calcium currents) and an
outward current (representing potassium current). Despite its simplicity, the two-currentmodel is able to closely reproduce
the restitution properties of the cardiac tissue and to simulate other complex electrophysiological behaviors such as spatial
variations of the action potential duration (APD) [31]. It has also provided important insights into key arrhythmogenic
factors, like alternans and discordant alternans [30,32,33]. The formulation of this model consists of two differential
equations for two variables: the transmembrane voltage v(t) and the inactivation gate variable h(t), both of which are
dimensionless and scaled to vary between 0 and 1. The temporal variation of the transmembrane voltage1 v(t) is described
by the differential equation

dv
dt

= F(v, h) = Jin(v, h)+ Jout(v)+ Jstim(t). (1)

where Jin and Jout represent the inward and outward currents, respectively, and they are given by

Jin(v, h) =
h(1 − v)v2

τin
and (2)

Jout(v) = −
v

τout
, (3)

and Jstim denotes the external stimulus current. The inward current Jin is regulated by the inactivation gating variable h(t)
obeying the equation

dh
dt

=


1 − h
τopen

, v < vcrit

−h
τclose

, v > vcrit .

(4)

The two-current model contains five parameters: τin, τclose, τout , τopen, and vcrit (see Table 1). The first four parameters are
time constants. They characterize the four phases of the cardiac action potential (AP): τin specifies the strength of the inward
current and represents the upstroke of the AP; τclose is the time interval over which h closes and corresponds to the plateau
phase of the AP; τout controls the strength of the outward current and determines the decay phase of the AP; finally, the
gate h reopens with time constant τopen (which is equivalent to the recovery phase of the AP). The last parameter, vcrit , is the
change-over voltage.

1 Using a simple transformation, v can be scaled back to appropriate physiological values.
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Table 1
Parameter values for the two-
currentmodel, obtained from [31].

Parameter Value (units)

τin 0.2 ms
τout 10 ms
τopen 130 ms
τclose 150 ms
vcrit 0.13

2.2. Cardiac bioelectric propagation model

Cardiac bioelectric propagation is simulated following the so-calledmonodomain formalism by inserting a diffusive term
in (1) [34]. Hence, the transmembrane voltage v(r, t) inside the cardiac tissueΩ is governed by the reaction–diffusion partial
differential equation

∂v

∂t
= κ∇2v + F(v, h), (5)

where the conductivity of the cardiac tissue is set to κ = 10−3 cm2/ms [31]. According to the monodomain formalism,
the diffusive term corresponds to the transmembrane current im = κ∇2v, which represents the current flow through the
cardiac cell membrane during the activation and repolarization processes. Eqs. (4) and (5) are supplemented using initial
conditions

v(r, 0) = vrest , h(r, 0) = 1, inΩ, (6)

for v and h, respectively, as well as no-flux boundary conditions

∂v

∂n
= 0 on ∂Ω, (7)

where ∂Ω denotes the boundary of the cardiac tissue and vrest is the resting potential. Eqs. (1)–(7) define our cardiac
bioelectric propagation model. We have considered the cardiac tissue having a two-dimensional geometry. An advantage
of this model is that analytical results that characterize the AP and its propagation throughout the cardiac tissue can be
extracted. In particular, the first APD and the conduction velocity (CV) of the AP are given by Cain and Schaeffer [31]

APD = τclose ln

τout

4τin


, (8)

CV =
1
4


3 ·


1 −

4τin
τout

− 1


2κ
τin
. (9)

For the set of parameters presented in Table 1, the two-current model predicts an APD of 379 ms and a CV of 46.9 cm/s.
These values are within the range of those corresponding to the healthy tissue.

2.3. Model of ischemia

Acute ischemia elicits profound electrophysiological alterations in cardiac cells which are mainly caused by hypoxia,
hyperkalemia and acidosis [35–37]. Hypoxia is a pathological condition in which an adequate oxygen supply is deprived.
This causes a significant reduction of the APD in the cardiac myocytes. Hyperkalemia refers to the elevation of extracellular
potassium concentration which decreases excitability and delays recovery of excitability of the cardiac tissue. Major
electrophysiological consequences of hyperkalemia include increase of the resting potential, and the reduction of (i) the
AP upstroke, (ii) the AP amplitude and (iii) the CV. Finally, acidosis is produced by a reduction in pH which decreases the
maximum conductance of sodium and calcium currents. Effects of acidosis manifest as a reduction in the amplitude of
the AP and a slight increase of the resting potential. A number of mathematical models have been used to analyze the
electrophysiological effects of myocardial ischemia on cell [37] and tissue levels [38–40]. Compared to normal conditions,
these studies show that, after approximately 10 min from the onset of the ischemia, the resting potential increases by 10%,
the APD decreases by 64%, and the amplitude of the AP decreases by 30%. In addition, the conduction velocity (CV) also
experiences a reduction of 68%. In this paper, we model acute ischemic conditions by appropriately modifying τin, and by
introducing vrest in (2) and (3), so that

Jin(v, h) =
h(1 − v)(v − vrest)

2

τin
, and (10)

Jout(v) = −
v − vrest

τout
. (11)
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Fig. 1. Resulting AP from the two-current model under normal (dashed line) and ischemic conditions (solid line).

Note that in these equations τin = τin(r) and vrest = vrest(r). These parameters characterize the ischemic region, while the
rest of the parameters in the model remain constant. Increasing the value of τin from 0.2 to 1.0 ms in the ischemic cells
decreases the APD to 137 ms according to (8), and CV from 46.9 to 14.8 cm/s according to (9). On the other hand, setting
vrest = 0.1 for the ischemic cells increases a 10% the resting potential mainly due to hyperkalemia and, to less extent,
due to acidosis [37]. Fig. 1 shows the resulting AP for both healthy (dashed line) and ischemic cells (solid line). Effects of
ischemia on the CV can be appreciated in Fig. 3(a). Setting τin = 1.0 ms and vrest = 0.1 allows us to describe the main
electrophysiological changes on cell and tissue levels corresponding to altered ischemic conditions. In spite of the simplicity
of this model, the induced effects of ischemia are in agreement with previous computer models [37–40]. At the tissue level,
we use a regionalmodel of ischemiawhere the parameters τin(r) and vrest(r) vary linearly between the healthy and the acute
ischemic regions. Fig. 2 represents an example of the spatial variation of τin in ourmodel of cardiac tissue. In this figure, there
is a circular-shaped ischemic zone S such that

τin(r) =


0.2 ms ≤ τin ≤ 1.0 ms inside S,
0.2 ms outside S. (12)

Likewise,

vrest(r) =


0 ≤ vrest ≤ 0.1 inside S,
0 outside S. (13)

The rest of the parameters remain constant within the whole tissue.

2.4. Model of intracardiac recordings

Motivated by the current non-contact endocardial mapping systems used in electrophysiology studies [6,7], we consider
monopolar intracavitary probe electrodes. According to the volume conductor theory [41], the electric potential registered
at a point ri within a cardiac chamber is given by

φi(t) =
1

4πσ


Ω

im(r, t)
|r − ri|

dr, (14)

where σ denotes the conductivity of the blood. This last expression relates the cardiac sources im(r, t) to non-contact
measurements φi(t). Therefore, using (14) together with the model of cardiac excitation and propagation given by (1),
(10), (11), (4) and (5) subject to (6) and (7) comprise a complete description of our direct problem. The properties of the
cardiac tissue are given by τin = τin(r) and vrest = vrest(r), and by the space independent parameters τclose, τout , τopen, and
vcrit . Fig. 3 represents the numerical experiment setup used in this study. In this case, a rectangular piece of the cardiac tissue
containing an ischemic region at the center has been considered. As a result, the cardiac electric impulse propagates slowly
at the ischemic region. The time dependent intracavitary recording shown in panels (b) and (c) aremeasured at point labeled
as (1) above the cardiac tissue. Panel (b) represents the registered recording when no ischemic zone is considered, while the
measurement shown in panel (b) is obtained when a central ischemic region is present. An elevation of the repolarization
wave can be observed due to ischemia [42].
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Fig. 2. Regional model of ischemia. Parameters τin and vrest vary linearly between values τ hin = 0.2 ms and vhrest = 0 for the healthy tissue, respectively;
and τ iin = 1.0 ms and virest = 0.1 for the ischemic tissue, respectively.

Fig. 3. Numerical experiment setup. (a) Snapshot of the electrical propagation of the cardiac impulse over a bi-dimensional tissue having a central ischemic
zone. The electrical activity is registered by non-contact electrodes placed at different locations. Examples of non-contact intracardiac recordings (in
arbitrary units a.u.) at location labeled as (1) when (b) no ischemia is present and (c) a central ischemic zone is considered.
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3. Shape reconstruction of ischemia

Let φ̃i be the truemeasurements and φi be the simulated data. Using this notation, ĩm(r, t) solves the direct problemwith
the correct parameters τ̃in(r) and ṽrest(r). Hence, the objective of our inverse formulation is to reconstruct the unknown
parameter distributions τ̃in(r) and ṽrest(r) in the cardiac tissue from the measured data. To this end, our direct model
potentials φi are compared to the measured intracavitary potentials φ̃i, so the model parameters are iteratively updated
to minimize the mismatch between calculated and measured data. This can be expressed in terms of the minimization of
the least-squares cost functional

J(τin, vrest) =
1
2

∥R(τin, vrest)∥
2
2 , (15)

where

R(τin, vrest) = φ(τin, vrest)− φ̃ (16)

being φ and φ̃ the matrix containing all simulated and measured intracavitary potentials, respectively. Eq. (16) describes
the mismatch between these physically measured data and the data corresponding to a guess (τin, vrest). Instead of solving
the inverse problem for the entire functions τ̃in(r) and ṽrest(r), we solve the shape reconstruction problem that only
requires to find the shape S of the ischemia. Our shape-based approach is motivated by the fact that we only use a few
intracavitary electrodes. Hence, the amount of data is very limited, giving rise to low resolution imageswhen standard pixel-
based techniques for the inversion are used. Under these circumstances, compared to standard pixel-based techniques for
inversion, shape reconstruction approaches reduce the dimensionality of the inverse problem, preserve the sharp edges,
and enhance the contrast in the images (see, for example, [26] for a more detailed discussion). In our shape inversion, the
unknown shape S of the ischemic region is implicitly represented by a smooth level-set function ψ that is negative inside
the ischemic region and positive outside it. Hence, the unknown parameter distributions can be described by

τin(r) =


1.0 ms inside S, where ψ(r) ≤ 0,
0.2 ms outside S, where ψ(r) > 0, (17)

and

vrest(r) =


0 inside S, where ψ(r) ≤ 0,
0.1 outside S, where ψ(r) > 0. (18)

In these equations, the parameters τin(r) and vrest(r)define the ischemic region. Since both parameters define the same shape
S, we will use only τin to define S from now on. Note that the boundary δS of the ischemia consists of all points such that
ψ(r) = 0. We will indicate the dependence of τin on the level-set functionψ , by τin(ψ). The main advantage of this implicit
representation of the unknown shape by a level-set function is its capability of automatically splitting and merging shapes
during the reconstruction. We note that the value of τin inside the ischemic region is assumed to be constant (and known)
during the reconstruction. Therefore, modeling error is introduced by incomplete knowledge of the parameter distribution
inside the ischemia. Indeed, the piecewise distribution assumed in (17) does not correspond to the true one defined in (12).
The value of τin in (12) increases linearly from the boundary of the ischemia up to a certain point inside S. With the above
definitions, we can formulate the shape reconstruction problem using level set as follows. Find a level set function ψ that
minimizes the shape least squares cost functional

J(ψ) =
1
2

∥R(ψ)∥2
2 , (19)

where we denote R(ψ) = R(τin(ψ)). The objective is to find a level set function ψ̂ such that using τin(ψ̂) (and vrest(ψ̂)) in
(4) and (5) (with (10) and (11)) the computed datamatch themeasured data. To solve the shape reconstruction problem, we
follow a time evolution approach [27,43].We introduce an artificial time ξ , related to the iterative step of the reconstruction
process, and use the evolution law

dψ
dξ

= f (r; ξ) (20)

for the unknown level set function ψ . The purpose of the evolution law (20) is to reduce, and eventually minimize (19). In
this formulation, the least-squares cost functional (19) depends on the artificial time ξ . Hence, we can evaluate its derivative
with respect to the time ξ applying the chain rule

dJ
dξ

=
∂J

∂τin

∂τin

∂ψ

dψ
dξ

=


gradτinJ(r; ξ),

∂τin

∂ψ

dψ
dξ


P

=


Ω

dr gradτinJ(r; ξ)τinδ(ψ)f (r; ξ), (21)
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Algorithm 1 : Shape reconstruction of ischemia
1. Set n = 0 and start introducing a level set function ψ (0)(r). The result is a piecewise distribution, as shown in Fig. 4 (b).
2. Apply Jstim, and solve the direct problem using the latest guess τin(ψ (n)). This gives rise to the predicted data φ(n)j .
3. Compute the residuals Rj = φ

(n)
j − φ̃j, and solve the adjoint problem (24)–(26). The gradient direction of J(ψ (n)) is

given by (23).
4. Compute f (n)(r) given by (22), and apply the update (27) to the level set function ψ (n). Smooth f (n)(r) by solving a heat

equation. It is well known that the gradient directions computed directly from the adjoint formulation lead to rapidly
varying functions in a spatial fine-scale, giving rise to f (n)(r) that exhibit strong variations. This introduces instabilities
during the reconstruction process that are necessary to avoid (see [28] for details).

5. Check the stopping criterion. In our case we have chosen as stopping criteria that the cost becomes stationary. If this is
not satisfied, go to step 2) with n = n + 1.

where ⟨, ⟩P represents the canonical inner product in the parameter space P . Using this equation, we can select a descent
direction for the cost functional by choosing

f (r; ξ) = −gradτinJ(r; ξ) for all r ∈ Ω. (22)

We compute the gradient direction gradτinJ(r) using an adjoint scheme. We give here the main result (see the Appendix
for details).

Theorem 1. The gradient direction of J with respect to τin at each artificial time ξ is given by

gradτinJ(r; ξ) =

 T

0
dt w

h(v − vrest)
2(v − 1)

τ 2in
(23)

where h = h(r, t) and v = v(r, t) are the solutions of our mathematical model using the distributions (17) and (18). In (23), T
is the time interval over which the intracardiac recordings are taken, andw = w(r, t) solves the following adjoint equation

−
∂w

∂t
− κ∇2w +


h
v(2 − 3v − vrest)

τin
−
vrest

τout


w =

1
4π


j

Rj∇
2 1
|r − ri|

(24)

n · ∇w(r, t) =
1
4π


j

Rjn · ∇
1

|r − ri|
on ∂Ω (25)

w(r, T ) = 0. (26)

In these expressions, Rj ≡ Rj(ψ(ξ)) = φj(ψ(ξ)) − φ̃j denotes the mismatch between the measured data φ̃j at each
electrode site and the calculated one φj(ψ(ξ)) using τin(ψ(ξ)). Discretizing (20) by a straightforward finite difference time-
discretization with time-step1ξ (n) > 0 in step n, and interpreting ψ (n+1)

= ψ(ξ (n) +1ξ (n)) and ψ (n)
= ψ(ξ (n)), we have

the iteration

ψ (n+1)
= ψ (n)

+1ξ (n)f (n)(r), ψ (0)
= ψ0. (27)

To avoid the usual instabilities that arise from the use of the gradient direction computed directly from the adjoint
formulation, we applied, previously to (27), a regularization strategy that smoothes the forcing terms f (n)(r). To this end,
we convolve the unregularized gradient directions calculated by (23) with a Gaussian kernel of a given variance. Practically,
this can be done by solving an initial value problem for the heat equation (for more details, see [28,43]. In Algorithm 1, we
outline our algorithm to reconstruct the ischemic regions.

4. Numerical experiments

In the numerical experiments presented below, we consider a bi-dimensional cardiac tissue of size Ω = 2 × 2 cm2

defined by the parameters shown in Table 1. Within the medium there might be one or several ischemic regions for testing
the algorithm. Measurements were simulated with a second order finite difference Crank–Nicolson scheme for the spatial
operators in a 100 × 100 grid. To discretize the resulting equations in time, we use a semi-implicit first order scheme
where the nonlinear terms are treated explicitly. In all the experiments, we have added random fluctuations of 10% to the
parameter values given in Table 1. The stimulation protocol consists on periodic pulses Jstim applied on a 0.8×0.8mm2 square
at the upper-left corner boundary of the cardiac tissue. Each stimulation pulse has 2 ms length and 1 ms−1 amplitude. At
the considered stimulation frequency (1.25 Hz) the steady state is reached after the second beat. For all experiments, the
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Fig. 4. First numerical experiment: reconstructing a single ischemia. (a) Reference τin profile. The (x, y) positions of the electrodes are shown with small
stars. The electrodes are placed at z = 0.5 cm above the tissue. (b) Initial τin profile. (c), (d), (e) Reconstructed τin profiles at 15, 30 and 80 iterations,
respectively. (f) Evolution of the cost during the reconstruction process (a.u.).

reconstruction algorithm is applied to a single cardiac cycle of length T = 800 ms in the steady state. In the first set of
experiments, we reconstruct the shape of ischemia usingmeasurements from 9 electrodes placed at 0.5 cm above the tissue.
Fig. 4 illustrates the reconstruction process in the situation where a single ischemic region is located at the top left quadrant
of the cardiac tissue. Panel (a) shows the (x, y) location of the electrodes along with the true τin profile which consists of a
region with τin > 0.2 ms surrounded by the healthy tissue with τin = 0.2 ms. The reconstruction algorithm starts using an
initial guess located at the center of the tissue (Fig. 4(b)). During the first iterations (Fig. 4(c) and (d)) the ischemic region
moves toward its right location. Then, after 80 iterations stopping criterion is fulfilled, producing a final reconstruction as
shown in Fig. 4(e). A comparison between the reconstructed and the real ischemic regions shows that the location, size and
form have been reconstructed successfully. Fig. 4(e) represents the evolution of the cost functional (15). It is apparent that
the cost functional (as well as the reconstructed shape) stabilizes after about 50 iterations. Fig. 5 shows the reconstruction
process in the situation where two disconnected ischemic regions are considered under the same electrode configuration
as the previous experiment. During the first iterations the reconstructed region breaks into two pieces (Fig. 5(b) and (c))
until the final estimation is achieved (Fig. 5(d)). As before, a comparison between the reconstructed and the real ischemia
regions (depicted in Fig. 5(a) and (d), respectively) shows a very good estimate of the location, form and connectivity of
the ischemia. Finally, in Fig. 6, we investigate the influence of the number of available measurements on the reconstruction
results. Fig. 6(a) and (b) display the final reconstructions for the experiment shown in Fig. 4 when we use four and sixteen
electrodes to carry out the inversion, respectively. Even with only four electrodes the algorithm is able to detect and locate
the ischemia correctly. On the other hand, the shape of the reconstructed ischemic region is closer to the real one when
we use sixteen electrodes. A similar behavior of the algorithm is observed in Fig. 6(c) and (d), which represents the same
experiment as in Fig. 5 but using four and sixteen electrodes, respectively. With only four electrodes the reconstructions are
satisfactory. However, the size and shape of the ischemic regions improve when more electrodes are used.
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Fig. 5. Second numerical experiment: two non-connected ischemias. (a) reference τin profile. The (x, y) positions of the electrodes are shown with small
stars. The electrodes are placed at z = 0.5 cm above the tissue. (b), (c) and (d) reconstructed τin profiles at 10, 30 and 80 iterations, respectively.

Fig. 6. Third numerical experiment: impact of the number of electrodes on the reconstructions. The (x, y) positions of the electrodes are shown with
small stars. The electrodes are placed at z = 0.5 cm above the tissue. (a) and (b) are the final reconstructions using 4 and 16 electrodes, respectively (the
reference τin profile is the same as in the first numerical experiment). (c) and (d) are the final reconstructions using 4 and 16 electrodes, respectively (the
reference τin profile is the same as in the second numerical experiment).

5. Discussion and conclusions

Several approaches have been proposed in the literature to identify regions of ischemia from body surface potential
measurements [44–47]. To carry out the inversion, these works usually consider a few hundreds of electrodes that record
several time-independent frames during a cardiac cycle. Hence, the spatio-temporal correlations of the electrograms are
not explicitly considered during the inversion. They also apply different techniques to this problem. In particular, Li and He
estimated the size and position of myocardial infarction by minimizing the difference between simulated and measured
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surface potentials over 200 electrodes using a machine learning algorithm [44]. Following a similar approach, Farina and
Dössel proposed an optimization-based method over a space of 12 parameters which define the localization of infarction
scars [45]. On the other hand, in [46,47] the authors use a level-set framework to identify ischemic regions which are
characterized by a higher value of the resting potential. Thus, they only use information given at the resting phase of the
cardiac cycle.

In this paper, we propose a different approach to reconstruct ischemic regions from a limited number of electrode
recordings. Our approach relies on incorporating the knowledge of the cardiac excitation process into the level-set
formulation. Hence, we incorporate the spatio-temporal correlation contained in the measurements through the cardiac
propagation model. Furthermore, we propose appropriate variations of the model parameters to take into account the
ischemia.

In the numerical experiments that we have presented in this paper, we considered a bi-dimensional model of the cardiac
tissue. These numerical experiments are meant to serve as a proof of concept. Despite the lack of sophistication in them, we
believe that our results show clearly that the proposed methodology may be very useful. However, future work has to be
done in order to overcome limitations of the present study and to extend the performance of our method to more realistic
scenarios. A detailed 3D model of the heart would have to be incorporated to demonstrate its potential. Nevertheless, we
stress that the proposed methodology is neither limited to 2D geometries (in fact, level set techniques have been widely
applied to 3D problems) nor to the specific two-current model used in this paper to describe the bioelectric propagation in
the cardiac tissue. Any other cardiac model could be used as well without the interference in the rest of the algorithm.
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Appendix

We derive here Eq. (23). To compute a descent direction of the cost J (15) when τin varies subject to (6) and (7). To derive
the adjoint equations, we build the Lagrange functional

L(τin; v(r, t)) = J(τin)−

 T

0


Ω

w


∂v

∂t
− κ∇2v


−

 T

0


Ω

w


h(v − vrest)

2(1 − v)

τin


+

 T

0


Ω

w


v − vrest

τout


. (28)

Obviously, when v and h satisfy (5) L = J for allw. Hence, we have incorporated Eq. (5) into the function L. We now take
the variation of (28):

δL =
∂L

∂τin
δτin −

∂L

∂v
δv. (29)

Note that if the last term is zero then δL = δJ. Since, so far, w is an arbitrary function, we can choose it so this last term
vanishes. Hence, we impose that

∂L

∂v
δv = 0. (30)

From this condition, we derive the adjoint equation. To first order, we can write

∂L

∂v
δv = L(τin, v + δv)− L(τin, v) =

∂J

∂v
δv

−

 T

0


Ω

v


∂δv

∂t
− κ∇2δv +

hv(2 − 3v − vrest)

τin
δv −

vrest

τout
δv


. (31)

Integrating by parts, applying the divergence theorem, and using (6) and (7) we obtain

∂L

∂v
δv =

1
4π

 T

0


j

Rj


Ω

δvκ∇2 1
|r − rj|

−


∂Ω

δvn · κ∇
1

|r − ri|



−

 T

0


Ω

δv


−
∂w

∂t
− κ∇2w +


hv(2 − 3v − vrest)

τin
−
vrest

τout
w


(32)
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where we have imposed that w(r, t = T ) = 0. Since ∂L
∂v
δv is zero for all δv, we rearrange the terms on the right hand

side and we identify (32) as the weak formulation of the problem defined by Eqs. (24)–(25). The minus sign in front of the
time derivative in (24) means backward time integration. Therefore, if we select w so that it satisfies the adjoint problem
(24)–(25) we have that

δJ = δL =
∂L

∂τin
δτin = ⟨gradτinL, δτin⟩P , (33)

from where

δJ = ⟨gradτinJ, δτin⟩P =


Ω

dr
 T

0
dtw

h(v − vrest)
2(v − 1)

τ 2in
δτin. (34)

To obtain (34), we have taken the derivative of (28) with respect to τin. Finally, we identify

gradτinJ(r) =

 T

0
dtw

h(v − vrest)
2(v − 1)

τ 2in
. (35)

With this we have proven Eq. (23).
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