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Abstract: Digital signal processing algorithms for cardiac recordings have been paid much attention in recently disclosed 
patents. In this second part of our review of the state-of-art patents, systems for sudden cardiac death prediction, as well as 
for apnea analysis, are summarized. Advanced digital signal processing algorithms for cardiac electric signals are 
specifically reviewed, including independent component decompositions, and nonlinear methods (chaos, fractals, and 
entropies). Finally, systems aiming to solve the inverse problem in electrocardiography are presented. Concluding remarks 
on these systems and on the whole review are discussed. 
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1. INTRODUCTION 

 In the companion paper [1], a compilation of recent 
patents on digital processing algorithms for cardiac signals 
analysis has been presented. This review included systems 
for basic feature extraction of the electric signals recorded 
from electrodes in the skin (called electrocardiogram, ECG), 
or from electrode systems in catheters placed inside the heart 
(called electrograms, EGM). Systems for analyzing cardiac 
arrhythmias in different applications have also been 
assembled therein. 

 In this paper, we include relevant higher-level systems 
that use digital processing algorithms in advanced 
applications related with electrocardiology and with cardiac 
electrophysiology environments. Specifically, the problem of 
accurate sudden cardiac death (SCD) prediction [2,3] has 
been targeted by a large number of disclosed systems. Also, 
apnea analysis [4] has been addressed in the recently 
disclosed patents. Special attention is paid here to advanced 
signal processing algorithms, such as blind source separation 
techniques or nonlinear analysis procedures including chaos, 
fractals and entropy principled algorithms, which have been 
disclosed as a part of advanced application systems. Finally, 
the inverse problem in electrocardiography [5], consisting of 
creating an anatomically detailed image of the electrical 
underlying cardiac activity from a diversity of electric 
signals, continues to be a field in which disclosed advanced 
systems aim to give to the clinician the best view of the 
cardiac electric activity. 

 The structure of this second part of the review is as 
follows. Section 2 deals with patents devoted to SCD risk 
stratification and prediction. Section 3 briefly deals with  
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sleep and apnea related patents. Section 4 summarizes the 
most relevant advanced algorithms and signal processing 
techniques. Section 5 is specifically devoted to the inverse 
problem electrocardiography, which nowadays is still one of 
the major problems to be solved. Finally, Section 6 contains 
some concluding remarks on the system in this paper, 
together with global considerations that can be extracted 
from the complete review. 

2. SCD PREDICTION 

 Risk stratification is an important tool to identify patients 
at high risk of suffering an episode of SCD in order to 
implement preventive therapies. These techniques include 
the analysis of QT dispersion and dynamicity, ischemia 
detection via ST segment analysis, heart rate variability 
(HRV) and heart rate turbulence (HRT) analysis, high 
frequency late potentials (LP) measurements, or T wave 
alternan (TWA) analysis [2]. Data required for these 
techniques are usually obtained via skin electrodes, such as 
Holter or event recorders. 

2.1. QT Measurements 

 Increased duration of the QT interval is associated with 
an increased risk of cardiac arrhythmias and SCD in several 
clinical scenarios. Hence, the dispersion and the prolongation 
of the QT interval have been proposed as markers for SCD 
prediction [6]. Two orientations can be pointed out for recent 
patents in this setting, which are the proposal of new markers 
based on signal processing and the proposal of modifi-
cations in the definition of the prediction system. 

Advanced Markers  

 In [3], a quantitative method for measuring QT intervals 
from ambulatory ECG recordings is presented, in which 
beat-to-beat data representative of cardiac interval are 
collected over an extended period of time. A series of bins, 
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each of which has a defined value range, is defined. The 
collected data are organized into the bins in accordance with 
the value of the data and the value range of the bin. The 
percentage of data in each bin is calculated to detect the 
percentage of beats that exceed a user-defined threshold. In 
[7], an ECG analyzer is disclosed which is capable of 
estimating the contour positions of the atrium and the 
ventricle from multichannel ECG waveforms. Moreover, 
useful information can be obtained for prediction of the 
SCD, such as the position of the maximum excitation 
propagation point, the distribution of LP as a marker of 
depolarization, or the distribution of RT segment dispersion 
as a marker of repolarization, which are displayed together 
with the estimated contour positions. 

Improved Systems  

 Conventional analysis of non-invasive cardiac parameters 
for SCD risk stratification usually focuses on single aspects 
of the patient’s electrophysiology, such as repolarization (QT 
variability) and depolarization (QRS duration) processes or 
autonomous system state (HRV, HRT). In [8], a system is 
disclosed for estimating the vulnerability to SCD from 
depolarization and repolarization measurements, by analy-
zing the variation between representative values of an ECG 
signal. Examples of relationship between depolarization and 
repolarization can be given by the QRS-T angle (angular 
difference between a QRS vector and a T vector) or the QRS 
duration versus T duration. In [9], risk stratification from 
ECG and one (marker of ischemia) or two (necrotic marker) 
in vitro diagnostic assays are proposed.  

 Systems for monitoring in implantable cardiac devices 
(ICD) have also been disclosed. In [2], an ICD is capable of 
recording a physiological signal in response to at least one of 
a number of risk stratification measured triggers, hence 
allowing the long-term risk monitoring from the ICD. In 
[10], inter-patient comparison for risk stratification of future 
heart failure decompensation is discussed. The system 
receives the data from an ICD, determines a reference group 
related to the patient, determines a reference group dataset 
from the reference group with patient data that is of a similar 
type received from the patient device generates a model of 
the reference group dataset, and automatically compares the 
received data to a model in order to derive a risk index for 
the patient. 

2.2. Ischemia 

 In general, the susceptibility of a patient to suffer a heart 
attack can be assessed by examining the heart for evidence 
of ischemia, this is insufficient blood flow to the heart tissue 
itself resulting in an insufficient oxygen supply, during 
periods of elevated heart activity. In general, the cardio-
vascular system responds to changes in physiological stress 
by adjusting the heart rate. This adjustment normally occurs 
along with corresponding changes in the duration of the QT 
intervals and an average action potential duration measured 
as the QT interval at each ECG lead may be considered as an  
 

indicator of cardiac systolic activity varying in time. The QT 
intervals variability, separately or in com-bination with heart 
rate analysis, has been suggested as an effective tool for the 
assessment of patient susceptibility to SCD [11]. A number 
of markers have been proposed for ischemia detection from 
the skin ECG and some of them are next summarized. 

Methods Based on Electrophysiological Mechanisms  

 In [11], a method is disclosed which collects RR intervals 
from the patient during gradually increasing and decreasing 
heart rate (exercise load). Comparison of both data intervals 
using their difference yields a measurement of cardiac 
ischemia during exercise, with a greater difference indicating 
greater ischemia. This process reflects almost exclusively the 
conduction in the heart muscle, minimizing the effect of 
rapid transients of autonomic nervous system and hormonal 
control. In [12], inventors state that prolongation of the QT 
interval, rather than shortening, is one of the first detectable 
symptoms of transmural ischemia, and hence a system for its 
measuring is disclosed which makes a comparison with 
baseline from the patient level. In [13], a method for 
discriminating between ischemic and cardiac memory effects 
is disclosed which calculates the direction of the T wave 
vector, diagnosing ischemia if its angle is in (75º, 200º) or 
cardiac memory if it is in (-90º,0º). 

Methods Based on Measurements from Patient Data Bases  

 In [14], a new methodology for the detection, localization 
and quantification of acute myocardial ischemia is proposed. 
Monopolar ECG array of leads are converted into multi-
channel spectrum and autocorrelation domains, and several 
decision variables are identified from the autospectra, such 
as the spectral peak (lower than 15 Hz during ischemia) and 
the width 50% below the peak (lower than 20 Hz during 
ischemia). Threshold levels from a Neyman-Pearson test are 
used for comparison with these variables to determine the 
probability of ischemic conditions. A method and an 
apparatus in [15] acquire multiple lead ECG and analyzes 
their global features, in particular, the projection coefficients 
obtained from projecting a concatenated vector of repre-
sentative heartbeat data onto sets of basis vectors that define 
an acute cardiac ischemic ECG subspace and a non-ischemic 
ECG subspace. Local features, such as morphological 
features or clinical information, can be included to enhance 
the detection of ischemic condition. Subspaces are obtained 
from sets of representative examples of patient data. In [16], 
coronary disfunction is identified by comparing some feature 
in the PQRST interval with the same feature in a database 
from ECG investigation of numerous subjects with 
documented condition. A score is obtained which, combined 
with ejection fraction, provides with an indication of risk. 
Also, the presence of rhomboids following a QRS complex 
in the frequency domain plots is indicative of risk. In [17], 
the Hermite coefficients of the ECG signal are obtained, and 
an artificial neural network (ANN) is used for evaluating 
ischemia by comparison to a previously documented dataset 
of ECG examples from patients. 
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2.3. HRV Algorithms 

 Under normal conditions, the heart rate is not constant, 
instead there exists a natural variation of the time intervals 
between consecutive heart beats. The normal heart rhythm is 
controlled by the cardiac sinoatrial (SA) node, which is 
responsible for the generation of quasi-periodic heart beats. 
The SA node is further modulated by innervations from both 
the sympathetic and the vagal branches of the autonomic 
nervous system (ANS). Both branches have antagonist roles, 
for instance, sympathetic activation increases the heart rate 
whereas vagal activation slows it down. In rest conditions 
there is a balance state between these systems that is 
responsible for the variability in the intervals between 
consecutive heart beats.  

 HRV is the variation in the intervals between consecutive 
heart beats or equivalently, the variation between consecu-
tive instantaneous heart rates. This signal allows noninvasive 
investigation of the ANS state and related diseases by the 
study of such variations. Classical methods for quantifying 
HRV include temporal methods and spectral methods. Both 
have been used for decades in order to characterize HRV 
[18-21]. 

Time Domain Methods  

 Time domain methods are simpler than spectral methods 
on computational terms. Chronologically, they were the first 
to be used in HRV analysis, and they still continue to be very 
used nowadays [21, 22-25].  

Spectral Methods  

 Power spectral density (PSD) analysis provides the 
information of how power (variance) is distributed as a 
function of frequency. HRV found in healthy subjects during 
rest is influenced by respiratory activity as well as by feed-

back mechanism of the systems for regulation of temperature 
and blood pressure. The different systems oscillate spon-
taneously at rest with characteristic frequencies in different 
intervals. By quantifying the power of the spectral compo-
nents of the HRV signal information about pathologies 
related to cardiac autonomic function may be pointed out. 
The spectral domain is divided into different frequency 
intervals, then the spectral power is measured in each 
interval and associated with the physiologic response of the 
heart to sympathetic or vagal stimulation [20,21,26-28]. 

 Some of the revised patents use only temporal methods 
or spectral methods. However most of these patents use both 
kind of methods, one as a complement to the other. 

HRV Risk Stratification  

 HRV has been proposed for risk stratification of lethal 
arrhythmias after acute myocardial infarction, as well as for 
the prognosis of SCD episodes [22,29,30]. After a myo-
cardial infarction, the innervation level of the heart dec-
reases, and part of the nervous control of this organ can be 
lost see Fig. (1). The HRV reflects this control loss and it 
makes possible the classification of cardiac SCD groups 
[24]. In [31], a statistic based HRV analysis method is 
disclosed. The method captures the ECG signal, performs 
analog-digital conversion of the ECG signal and the peaks of 
the ECG signal are selected. Then, the standard deviation of 
the heights, durations and inter-peak intervals of the peaks 
are calculated. The peaks whose heights, durations or inter-
peak durations fall beyond a standard deviation are removed. 
The remaining peaks are sampled and interpolated to form a 
consecutive peak signal. Finally, a spectrum analysis of the 
peak signal is calculated, as follows: First, a linear drift is 
eliminated from the signal and a Hamming computation is 
employed to prevent the mutual leakage between individual 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Example of a HRV signal from a healthy subject (above) and a HRV signal from a subject suffering from Congestive Heart Failure 
(down). 



Digital Processing for Cardiac Electric Signals (II) Recent Patents on Biomedical Engineering, 2009, Vol. 2, No. 1    35 

frequency components. After that, Fast Fourier Transform 
(FFT) is performed to obtain the PSD and the effects of 
sampling and Hamming computation are compensated. The 
powers of the low frequency (LF), high frequency (HF) 
bands of the PSD and LF/HF ratio are quantified. In [32], a 
method is shown for calculating the HRV to be used in an 
ECG monitor. The method scans the ECG signal from the 
ECG monitor and determines a number of discrete 
representative values of the HRV signal. The measured 
values are evaluated on the basis of the Fourier Transform 
(FT). The invention suggests the replacement of the known 
FFT by an approximation method which, based on the FT, 
replaces numerical vector values for calculating the freq-
uency spectrum of the measured values by a limited number 
of roughly approximated vector values that reflect the course 
of the Fourier vectors. This method allows a considerable 
reduction of the computation and memory needs, and thus its 
application in ICD. 

HRV Applications  

 HRV is used to quantify the efficacy of baroreflex 
activation therapy (BAT) for the treatment of hypertension 
or other physiological conditions or diseases. In [33], the 
HRV analysis is further used to determine the need for 
adjusting the BAT. In [34], the use of the estimated HRV is 
suggested to determine a HRV index using also adjustment 
factors such us heart rate, age, gender or blood pressure. The 
estimation of the HRV is done by statistical and spectral 
methods. 

 Although much progress has been made using the tools 
of HRV to characterize Holter recordings, little work has 
been done with exercise testing where the effects of the ANS 
are pronounced. It is estimated that the risk of SCD is 17-20 
times greater during exercise than during the resting phases 
that dominate Holter recordings. In [35], new methods are 
provided for characterizing the temporal and spectral 
characteristics of the HRV during the exercise test and 
integrating disparate metrics for risk stratification. In [36], a 
method is shown for determining the state of entrainment 
between biological systems such us heart rhythms, 
respiration or blood pressure, based on a determination of 
HRV and an evaluation of the PSD thereof. Entrainment 
reflects a harmonious balance between the two branches of 
the ANS within the body. The method first determines the 
PSD and then calculates an entrainment parameter, which is 
a measure of the power distribution in the HRV spectrum. 
High parameter values occur when this power is 
concentrated within a relatively narrow range of frequencies, 
and lower values when the power is distributed over a 
broader range of frequencies.  

2.4. LP Algorithms 

 It has been recognized [37] that a diseased state in the 
ventricular myocardium may slow the conduction velocity of 
the electrical impulse in small areas of this anatomical 
region. Regions of slow conduction may sustain reentrant 
activation, which in turn is the main mechanism for clini- 
 

cally relevant ventricular arrhythmias. The late activation of 
the slow conducting areas yields a low-amplitude potential 
that shows up at the end of the QRS signal, called a LP. 
Special data acquisition techniques are required to detect and 
measure such tiny potentials. In general, two techniques for 
high resolution electrocardiography had been available, 
namely, signal averaging, which relies on the noise being 
random and on the addition of a large number of signals 
resulting in noise cancellation and high gain ECG, which 
relies on very high gain amplifiers. 

 Two main groups of patents can be found in this appli-
cation. The first ones aim to improve the spectral description 
of the LP domain, either by improving the bandpass filtering 
stage, or by showing the time-frequency representation of the 
LP domain. The second ones use advanced methods for 
noise cancellation to the microvolt level. 

Bidirectional and Bispectral Filters  

 Several alternative methods have usually focused on the 
filtering settings. In [38], a system was disclosed for detec-
ting minute LP, which filters the QRS signal bidirectionally 
(normal and time reversed), and then separately processed 
both signals with a window function before their summation. 
The summed signal is passed through a smoothing function 
for yielding an output signal of ideal phase that delineates 
any LP within the QRS complex, including high-frequency 
potentials in the Fourier spectrum. In [39], another system 
for bispectral filtering is proposed, which obtains the QRS 
onset from a number of beats and then uses two filters 
(passband of 70-200 Hz and 40-200 Hz) to establish the QRS 
offset and for accurate determination of RMS (voltage values 
for the terminal 40 ms of the waveform) and of low 
amplitude signals (from downside slope of the R peak to the 
QRS offset). The system also uses a spectral filtering for the 
ECG input signals with 150-250 Hz bandpass, allowing the 
determination of additional high frequency activity in the 
midportions of the QRS complex. 

QRS Spectrograms  

 Previous LP analysis methods rely on bandpass filters for 
measuring the presence and magnitude of LP in predefined 
spectral bands. In [40], a system is disclosed which performs 
the spectrogram, i.e. Fourier analysis of short overlapping 
time segments, of the QRS complex in high resolution ECG, 
which are used to plot time-spectral maps showing changes 
in the frequency spectral content of the ECG along the QRS 
period. A risk indicator for ventricular tachyarrhythmia, the 
spectral turbulence, is further calculated by using correla-
tions and statistical evaluations of the spectral contour in the 
QRS time segment pairs. In [41], another time-frequency 
domain characterization is disclosed. Several small signal 
segments are selected in an ECG waveform, for instance, 20 
to 70 ms overlapping windows with steps of 2 ms. Two 
autorregressive models are used, maximum entropy method 
and least-squares adaptive filter, for estimating the time 
series coefficients and yielding the spectrum. This approach 
has the usual advantages of nonparametric vs parametric 
methods for spectral estimation. 
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Advanced Noise Cancelation Systems  

 In [42], an improvement of LP conventional analysis first 
removes low frequency noise and common mode signals (60 
Hz noise and its harmonics). The remaining electrical 
interference caused by underlying muscle tissue, nerve tissue 
and environmental noise, is removed with an adaptive filter, 
using at least two ECG leads. In [43], a real time system is 
disclosed, aiming to obtain high resolution measurements 
from ambulatory Holter, which performs digital signal 
averaging of initially selected signals (10 to 15 minutes, 
approximately 1000 beats), and signal averaged template is 
correlated with each beat in order to accept only a previously 
defined correlation coefficient level (0.98), yielding 
summated results that have eliminated nonrepetitive noise to 
less than a microvolt. In [44], the signal-to-noise ratio of 
ECG is enhanced by time-synchronizing a number of cardiac 
cycles to form a signal ensemble and then determining the 
correlation between the signals in the ensemble in time 
intervals. The correlation is used to determine an optimum 
filter characteristic for the ECG signal to enhance the signal-
to-noise ratio of the ECG signals.  

2.5. TWA Algorithms 

 TWA is defined as a beat-to-beat consistent fluctuation in 
the repolarization morphology, which can be observed in the 
ECG and EGM signals under adequate conditions [45]. 
TWA has been shown to be related to cardiac instability and 
increased arrhythmogenicity. Moreover, clinical studies 
suggest that large amplitude microscopic (microvolt level) 
TWA is associated to a high risk of SCD [46]. Thus, TWA is 
considered as a strong marker of cardiac electrical instability 
and may be useful for SCD risk stratification [47]. 

 In this subsection, patents for TWA detection in ECG 
and EGM are presented. Some of the revised patents focus 
only on the detection stage, while others also include post-
detection therapy. 

TWA Detection on ECG  

 Non-invasive techniques for assessing myocardial elec-
trical stability often involve analysis of the beat-to-beat 
alternation in the morphology of the ECG. In [48], a method 
is disclosed which optimizes the detection of the small 
alternans signal, by taking into account both the anticipated 
physiological nature of the signals origin and introducing 
several signal measurements. The ECG from the patient is 
divided into individual cardiac cycles and the amplitude of 
four segments of the repolarization portion and the depo-
larization portion of each cardiac cycle are measured. Based 
upon these measurements, digital signal processing is used to 
generate eigenvariables. A spectral density is calculated for 
each of the eigenvariables and these spectral densities can be 
used to determine both the presence of alternans and the 
respiratory frequency. 

 In [46], a system for quantifying TWA and ST segment 
of an ECG is presented. The system receives a digitized 
ECG, which is used to calculate an odd median complex for 
the odd beats in the ECG and an even median complex for 

the even beats in the ECG. The odd median complex and the 
even median complex are then compared to obtain an 
estimate of the amplitude of beat-to-beat alternation in the T 
wave morphology. 

TWA Detection in EGM  

 Using intracardiac EGM, alternans are considerably 
larger than the microvolt TWA detected using surface 
electrodes and hence, direct measurement of repolarization-
phase amplitude differences between even-numbered and 
odd-numbered heart beats can be done without aggregate 
statistical techniques. In [49], an invention is presented 
which permits control stimuli to be delivered in response to 
real-time alternans data using a suitable nonlinear-dynamical 
control algorithm see Fig. (2). Timing and amplitude of the 
stimuli is designed to terminate the alternans rhythm. 
Because the control technique is adaptive, it is able to 
estimate underlying nonlinear dynamics and has flexibility to 
withstand rhythm nonstationarities. With such control, 
potential routes to a ventricular arrhythmia are eliminated. In 
[50], a method is provided for assessing TWA using cardiac 
EGM signals received from implanted electrodes. A T wave 
signal parameter is measured from signals received by an 
automatic gain control sense amplifier. A TWA measure-
ment is computed from a beat-by-beat comparison of T wave 
parameter measurement or using frequency spectrum 
techniques. TWA assessment further includes discriminating 
concordant and discordant TWA in a multi-vector TWA 
assessment and determining the association of a TWA 
measurement with QRS alternans, mechanical alternans and 
other physiological events. A prediction of a pathological 
cardiac event is made in response to a TWA assessment.  

3. SLEEP APNEA 

 Sleep apnea is a breathing disorder characterized by brief 
interruptions of breathing during sleep. Central sleep apnea 
occurs when the brain fails to send the appropriate signals to 
the breathing muscles to initiate respiration, whereas obs-
tructive sleep apnea occurs when air cannot flow through the 
patient’s nose or mouth although efforts to breathe continue. 
Unknown to the patient, this results in heavy snoring, 
periods of no breathing and frequent arousals, which are 
abrupt changes from deep to light sleep. This also results in 
low levels of oxygen and increased levels of carbon dioxide 
in the blood, causing an arousal. In normal sleep, the non-
rapid eye movement phase has a reduction in central 
respiratory drive, resulting in a regular pattern of breathing, 
and the patient’s heart rate, blood pressure, stroke volume, 
cardiac output, and systemic vascular resistance all decrease. 
This state of hemodynamic and autonomic relaxation reduces 
the myocardial workload, but with sleep apnea the non-
regular pattern of breathing results in abnormal hemo-
dynamic and cardiovascular responses [4] that can be related 
to the occurrence of arrhythmias or even SCD. 

 Therefore, respiratory signals have been often analyzed 
together with ECG signals. The system in [4] acquires 
respiration (via impedance, acoustic, or other data) and ECG 
data from the patient and analyzes them in order to 
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determine a correlation between sleep apnea and sudden 
cardiac death. In [51], a method and an apparatus for ECG-
derived sleep disordered breathing monitoring, cardiac 
events detection and HRV monitoring, is disclosed for real-
time application. In [52], a system is disclosed which carries 
out heart rate measurements of a patient at least during two 
sleep stages before the operation to obtain preoperative heart 
rate data, and calculating a dynamic HRV measurement by 
using non-linear analysis. In [53], a device is disclosed for 
simultaneous monitoring of cardiac activity, respiratory rate, 
and evaluation of sleep states of a user, which evaluates 
cardiac activity, HRV and ECG derived respiratory rate 
(from the R waves series) for evaluation of sleep disorders. 
In [54], respiration patterns are obtained via integration of 
intracardiac EGM, which are used to detect apnea, 
hyperpnea, and other disorders, and to deliver appropriate 
therapy. 

4. ADVANCED ALGORITHMS 

 In this section, patents on the application of advanced 
signal processing techniques to the analysis of cardiac 
signals are presented. Having a solid theoretical foundation, 
these methods are claimed when reporting specific impro-
vements for the cardiac signal processing setting, and they 
are used as the basis principle for applications such as the 
extraction of morphological features, the classification and 
quantification of the cardiac signals or the ECG and EGM 
signal compression. These advanced algorithms can be 
broadly split into four different groups, namely, time-freq-
uency analysis using wavelet transform (WT), statistical 
methods using principal component analysis (PCA), inde-
pendent component analysis (ICA) and nonlinear methods. 
After a brief theoretical introduction to the processing tech-
niques and some examples of cardiac signal applications in 
the literature, different patents on each processing technique 
are briefly described. 

4.1. WT Analysis 

 The WT can be seen as a time-frequency signal analysis. 
While the FT compares the similarity of a signal with a set of 
sine waves of different frequencies, the WT compares the 
signal with finite waves and their scaled versions, the so-
called wavelets. A wavelet is an oscillating function whose 
energy is concentrated in time to better represent transient, 
nonstationary signals. This type of function involves two 
parameters, one for time translation and another for time 
scaling, which allow to analyze the joint presence of global 
waveforms related to large scales as well as fine waveforms 
corresponding with small scales [26]. The continuous WT of 
a continuous-time signal x(t)  is defined by the correlation 
between x(t)  and a scaled, translated version of a function 

(t)  called mother wavelet,  

Wx (s, ) = x(t)
1

s

t

s
dt

+

                      (1) 

where s > 0  is the scale parameter, and  is the translation 
parameter.  

 Wavelet analysis is useful in the processing of biological 
signals for which the time localization is essential. 
Specifically, relevant tasks in ECG analysis are the detection 
of QRS complexes, T wave and P wave or the determination 
of beat-to-beat time and frequency parameters. In these 
applications, the ability of wavelet functions to time-widths 
adapting to each frequency provides with more accurate 
results than other classical approaches. WT has also been 
used for detection of myocardial ischemia and for cardiac 
signal denoising, e.g. in ECG recordings for removal of the 
50 Hz noise (soft thresholding on the ECG wavelet 
coefficients) and baseline wander elimination [55,56]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The Figure shows the amplitude values of 100 successive beats after a fiducial point. A distinct alternation between the even-
numbered and odd-numbered beats is apparent (adapted from [49]). 
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Cardiac Signal Denoising  

 In [57], a WT based denoising technique for EGM is 
presented. In the preferred embodiment, one EGM is 
decomposed in the time-scale domain by using a set of finite 
wavelets. Some of the wavelets include the majority of 
information indicative of the EGM, while the others 
basically include noise. Then, a thresholding procedure can 
be performed on the wavelets to eliminate noise while 
preserving the information of the EGM. It is possible to 
apply different thresholds for the wavelets in different scales 
in order to improve the denoising. Following the thres-
holding, the wavelets are converted back into a denoised 
EGM via inverse WT.  

Cardiac Events Classification  

 In patent [58], wavelet analysis capabilities to scrutinize 
fine structures and transients in nonstationary signals are 
applied to the study of different phenomena in EGM signals. 
The EGM is represented by a finite set of wavelets, yielding 
a decomposition in the time-scale domain. Then, a wavelet 
process unit is used to distinguish between occurrences of 
the following specific phenomena in EGM: (a) Large 
amplitude steep deflections, which correspond to primarily 
cardiac depolarizations at the given location; (b) Small 
amplitude steep deflections, which correspond to secondary 
cardiac depolarizations at the given location, e.g. commonly 
present during atrial fibrillation (AF); (c) Large amplitude 
shallow deflections, which correspond to a primary cardiac 
depolarization at a location that does not correspond to the 
sensing electrode, such as a ventricular depolarization sensed 
by an atrial electrode. 

 The invention in [59] discloses a depolarization wave-
form classifier based on wavelet analysis which tries to 
overcome the problems in rate-based event classifiers. Rate-
based methods of event categorization in ICD decrease their 
sensitivity and specificity when atrial and ventricular rates 
are similar because they are not capable of differentiating 
rhythms using morphological features. The WT approach 
approximates the human expert analysis because it correlates 
distinct morphological features at multiple scales. The choice 
of wavelet analysis is justified by the fact that depolarization 
events are limited in energy and duration. 

4.2. PCA in ECG Analysis 

 PCA is a statistical technique whose aim is to reduce the 
dimensionality of a data set consisting of a large number of 
correlated variables into a few variables (so called principal 
components), while maintaining as much as possible of the 
information present in the original data set [60]. Depending 
on the field of application, it is also named the Karhunen-
Loève transform (KLT), the Hotelling transform, or proper 
orthogonal decomposition. The principal components are 
uncorrelated and ordered so that the first few keep the most 
for the variation present in all of the original variables. In 
signal processing applications, PCA is performed on a set of 
time series rather than on a data set of variables. 

 PCA in ECG signal processing is usually applied to 
samples extracted from the same segment location of 
different periods of the signal [61]. The location within the 
beat differs depending on the application and may comprise 
the entire heartbeat or a particular activity, e.g. T wave in 
order to study the repolarization characteristics.  

 Then, the principal components can be obtained from the 
data by applying an orthonormal linear transformation under 
the constraint that principal components are mutually 
uncorrelated and form a subspace that has the largest 
variance. 

 PCA has been widely used in different ECG signal 
processing applications, namely: (a) Data compression, both 
for efficient storage retrieval and for transmission across 
communication systems [62, 63]; (b) Noise reduction [61]; 
(c) Feature extraction, in which a subset of the principal 
components plays the role of features used to identify and 
analyze the cardiac signal waveforms [61]. 

ECG Feature Extraction  

 In [64], a multidimensional ECG processing and display 
systems for near real-time analysis is disclosed. In the 
preferred embodiment, the ECG recording signals are 
arranged into a two-dimensional matrix, which is analyzed 
using Singular Value Decomposition (SVD), a factorization 
technique closely related to PCA (SVD is indeed a more 
general method of understanding the change of basis carried 
out by PCA). The singular vectors obtained are further 
analyzed in order to identify ECG signal components of 
interest (such as TWA or LP), e.g. selected singular vectors 
can be analyzed in the frequency domain by using FFT 
techniques or may be adaptively filtered to enhance the 
components of interest.  

 In [65], a method for evaluating an ECG is disclosed. 
The method measures the electrical activity of a patient and 
processes the measured electrical activity to form a multi-
lead signal and extracts a segment of such signal. Then, the 
extracted segment is transformed into a synthesized signal 
that is most representative of the patient's electrical activity. 
The transformation is performed by using a PCA. Finally, 
the synthesized signal is evaluated.  

 In [66], high resolution spectral analysis in multichannel 
ECG is made by using SVD techniques, in which a plurality 
of sensor signals are combined to form a data vector, and a 
plurality of data vectors are combined to form a matrix. A 
SVD of this matrix yields the (thresholded) eigenvalues, in 
which the imaginary parts of the natural logarithms of the 
eigenvalues are the soft, spectral frequencies and the real 
parts of the natural logarithms of the eigenvalues are 
attenuation constants for these frequencies. A frequency 
histogram can then be generated, from which LP can be 
identified. In [67] a method for assessing repolarization 
abnormalities is disclosed, which uses at least two 
repolarization signals extracted from ECG signals, and at 
least two repolarization signal from two different locations. 
Then, PCA is performed on (at least) two repolarization 
signals in order to extract (at least) two eigenvectors, ev1  
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and ev2 . Then, the ECG signal is transformed in a plane 

defined by the two eigenvectors and a maximum vector MV  
is determined. Finally, the system has a processor that 
determines the repolarization duration based on the MV  
obtained. 

 In [68], a method for providing an accurate measurement 
of the QT interval and to find new T wave morphological 
features is described. These new features can be extracted 
from a composite beat formed from the eigenvectors 
obtained by PCA. Moreover, in an embodiment, a database 
of ECG signals is compiled for use as a reference library. 
This database is used to generate a model ECG PCA that is 
compared against the PCA computed on the collected ECG 
signals, this allows for automated morphological feature 
detection by determining confidence intervals of specific 
morphological features. 

ECG Compression  

 In [69], an algorithm for compression of ECG recordings 
is presented. The algorithm can optionally reduce com-
putation time and storage space required by exploiting the 
differing spectral densities in the PQ, QRS and ST blocks of 
a heartbeat to apply a multirate downsampling operation that 
retains the appropriate spectral information in each block. 
The downsampled beats are then padded to make them of 
uniform size and a Karhunen-Loève Transform (KLT) is 
applied to the sample set. The most significant coefficients 
from the KLT are retained for reconstruction according to 
two different criteria: (a) Variance criterion, which retains 
the same number of coefficients so that the average variance 
of the reconstructed sample set is controlled; (b) Quality 
criterion, which retains a different number of coefficients for 
each beat according to a quality index. 

4.3. ICA in ECG Analysis 

 ICA is a method for finding underlying components from 
multivariate data, under the requirement of these components 
to be both statistically independent and nongaussian [70]. 
ICA is included in the group of blind source separation 
(BSS) techniques. In practical terms, it allows us to recover 
the original (independent) source signals from their 
corresponding observed and mixed signals, with little a priori 
available information. Usually, it is necessary as many 
mixed signals as source signals. A classical example is the 
cocktail-party problem, where the aim is to recover the 
voices of different speakers from the mixed ones in a 
cocktail-party [71]. The basic ICA approach uses the 
following linear model: 

y = As                                                                   (5) 

where vector s  represents m independent sources, matrix A  
is the linear mixing of the sources, and vector y  is the set of 

observations. Therefore, ICA consists of estimating both 
matrix A  and sources s , when only y  is observed.  

 

 Recently, the application of ICA techniques to ECG 
processing has received increased attention and 
development. These applications rely on the ECG satisfying 
some of the conditions for ICA, namely: (a) Current from 
different sources is mixed linearly at the ECG electrodes; (b) 
Time delays in signal transmission are negligible; (c) There 
appear to be fewer sources than mixtures; (d) Sources have 
nongaussian voltage distributions [72]. 

 In the literature, two approaches using ICA techniques to 
ECG processing are mostly found. First, artefacts and noise 
removal from ECG have been addressed [73]. The main 
assumption in this application is that both, artefacts and 
noise, are reasonably independent of signals originating from 
the heart. Second, noninvasive foetal ECG extraction has 
been addressed [72,74]. In this application, ICA is used to 
decompose maternal and foetal ECG recorded simulta-
neously from skin electrodes on the mother's abdomen and 
chest. 

Maternal-Foetal ECG Separation  

 In [75], a system for maternal-foetal monitoring is 
presented, which provides to the user with real-time, 
maternal ECG signals, maternal uterine activity signals, 
maternal heart rate, foetal ECG signals, and foetal heart rate. 
In this invention, all the transmitted electrical activity is 
recorded by electrodes placed on the skin surface, including 
maternal ECG, maternal skeletal muscle, uterine muscle, 
foetal skeletal muscle and foetal ECG. ICA algorithm is used 
to separate maternal and foetal ECG signals in a non-
invasively way. Additionally, some post-processing signal is 
applied on the separated components to present clinical 
observations regarding maternal and foetal health. The 
proposed ICA algorithm is the so-called Mermaid ICA. This 
algorithm performs the source separation by minimizing the 
output mutual information (MI), which is a measure of the 
dependencies (linear or non-linear) between signals and it is 
null (minimum) when the signals are independent. The way 
to estimate the MI is by using Rényi's entropy. The 
optimization algorithm selected is the gradient descent. In 
order to simplify the computation of the gradient, the patent 
proposes project the sources onto an orthonormal space 
(using principal components analysis, PCA) and then rotates 
these projections into a space of minimal MI.  

 In patent [76], a heart signal device to obtain heart signal 
information from a pregnant mother is proposed. In 
particular, the device has the ability to make a determination 
of the foetal heart component signal based on the heart signal 
information. This patent tries to overcome one common 
problem in foetal ECG separation which is the fact that the 
noise in each ECG recording channel is different from that in 
the other channels. This is a relevant problem when the noise 
has a power similar to the foetal ECG signal power, which is 
usual in early stages of pregnancy. Therefore, in order to 
overcome these difficulties, in this patent, an ICA based 
separation sub-system is combined with a noise-reduction 
sub-system based on nonlinear blind adaptive filtering 
methods to reduce the effects of measurement noises. 
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ECG Signal Decomposition  

 Patent [77] proposes a system to receive ECG recording 
signals and then separating these signals in its original 
component signals. The hypothesis is that ECG recording 
signals are typically combinations of original signals from 
different sources such as the atria and ventricles that produce 
different spatial and temporal patterns of electrical activity. 
Apart from P wave, QRS complex and T wave, there could 
be also weak irregular oscillatory signals that suggest a heart 
arrhythmia. The QRS complex often masks the other 
components, difficulting their interpretation. Therefore, in 
this patent, an ICA approach to separate the recorded ECG 
signals is presented. The separated signals are additionally 
displayed to help physicians to analyze heart conditions and 
to identify probably locations of abnormal heart conditions. 
In the preferred embodiment, the separated signals by ICA 
are plotted on a chaos phase space portrait to allow an 
enhanced interpretation. Another patent related with the 
previous one [78] uses the same procedure to decompose 
cardiac signals, i.e. ICA methods to decompose ECG signals. 
However, in this patent a method to group the different 
components according to predefined criteria is provided. 

4.4. Nonlinear Analysis 

 Nonlinear signal processing techniques require the cons-
truction, estimation, and evaluation of nonlinear models of 
the signals under study (e.g. cardiac signals) under the 
hypothesis that they are generated by the output of chaotic 
dynamical systems. Chaotic dynamics provide with a 
possible explanation for the different complex and erratic 
patterns that appear in many cardiac signals, such as the 
heart rate. The term chaos is used to describe certain 
dynamical systems that may exhibit behaviours which are 
highly sensitive to small perturbations in the initial con-
ditions and exhibit such unpredictable behaviours that 
structured signals seem to be random [79]. The different 
nonlinear methods that are usually applied to cardiac signals 
can be split into three different groups: Chaos Theory 
methods, Fractal Theory methods, and Information Theory 
methods. 

 Chaos Theory methods are based on analysis of the 
nonlinear dynamic attractors in phase spaces. A key issue in 
practical application of these methods is the Takens' 
Theorem, which states that by using only a measured signal 
generated as an output of the chaotic system, it is possible to 
build a reconstructed phase space (and therefore a 
reconstructed geometrical attractor), that preserves the 
properties of the dynamical system. The characterization of 
reconstructed attractors is usually done by estimating the 
Lyapunov Exponents and the Fractal Dimension (FD) of the 
attractor. The former describes the unpredictability of the 
underlying system as a result of the sensitivity on initial 
conditions, whereas the latter, usually estimated by the 
correlation dimension, quantifies the number of actual 
degrees of freedom of the system, that is, it measures its 
complexity. The main applications of these methods on 
cardiac signals have been the following: Nonlinear noise 

reduction in ECG by using phase space projections [80]; 
Foetal ECG extraction [81]; Analysis of ECG during sinus 
rhythm and arrhythmia, using correlation dimension to 
distinguish between ventricular fibrillation (VF) and other 
arrhythmias [82]; And HRV assessment by using correlation 
dimension and Lyapunov exponents [83]. 

 Fractal Theory methods are based on the analysis of self-
similarity and correlation properties of time series. Several 
different methods have been used to quantify these 
properties in cardiac signals, especially to HRV time series. 
The aim of such methods is to estimate a scaling exponent, 
usually related to the so-called Hurst exponent, in order to 
quantify the correlation properties. Two of the most widely 
used methods are the Rescaled Range Method and the 
Detrended Fluctuation Analysis (DFA) [84]. This kind of 
methods has been used on RR series for risk stratification of 
SCD [85]. 

 Information Theory methods use different entropy 
estimators in order to quantify the complexity, i.e. irregu-
larity, of the analyzed signals. Entropy estimators can be 
split into two different categories, namely, spectral entropies 
and embedding entropies. Spectral entropy estimators use the 
amplitude components of the power spectrum of the signal as 
the probabilities in entropy calculations, whereas embedding 
entropy estimators use the time series to estimate the 
entropy. The entropy methods, namely Approximate Entropy 
(ApEn) and Sample Entropy (SampEn), have been widely 
applied assessing heart rate irregularity [86], and they also 
have been used on ECG signals in order to predict AF [87]. 

Patents with Chaos Theory  

 In [88], an indication is provided of a significant 
parameter for clinical evaluation of ventricular LP from a 
parameter measuring the LP complexity. The computed 
index is the FD of the LP attractor, the last one being 
reconstructed in a three dimensional voltage phase space 
from the ECG signals, and it is computed as: 

FD =
log(L)

log(DD)
                                                     (6) 

where L  is the total length of the attractor and DD  is the 
spherical extent diameter. The parameter is compared with a 
certain threshold to indicate the SCD risk.  

 In patent [89], inventors propose a method to predict the 
onset of cardiac pathologies using a fractal index, i.e. an 
estimation of the fractal dimension. To compute this index, 
at least three ECG leads are required, then, a spatial curve is 
defined from the lead value, as a reconstructed attractor, 
from which the fractal index is obtained. The invention 
allows for the fractal index being calculated as a function of 
time, thus the rate of change of the index can be monitored. 
A negative rate of change indicates normal cardiac activity, 
whereas a positive one indicatives pathological cardiac 
activity.  

 In [90], a method for assessing the risk of SCD is 
disclosed, which determines correlation parameters of NN 
intervals with rate dependent fluctuations of ECG para-
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meters, by measuring the persistence of rate dependent 
patterns of ventricular ectopy in the ECG or in other similar 
recordings. Proposed suitable parameters are coupling 
interval of premature ventricular complexes to sinus beat, 
time intervals between consecutive ventricular beats, number 
of intervening sinus beats between two ventricular beats, and 
onset of bigeminity after short-long RR sequences. 

Patents with Fractal Theory  

 In patent [91], a method to estimate the Hurst exponent 
from a time series data is presented. The invention gives an 
application example to assess the HRV by using the method 
proposed in different contexts, e.g. distinguish alcoholic 
subjects from normal ones. The algorithm computes a 
scaling exponent D from a phase space reconstruction, and 
the Hurst exponent, H, is obtained as: 

H = 2 D                                                                   (7) 

Patents with Information Theory  

 In patens [92,93], the details for ApEn calculation are 
disclosed. Fig. (3) represents a flow chart of the algorithm to 
compute ApEn from a time series. According to these 
inventions, ApEn is a regularity statistic that quantifies the 
unpredictability of fluctuations in a time series, therefore, 
ApEn reflects the likelihood that similar patterns of 
observations will not be followed by additional similar 
observations. Quantitative values can be assigned to measure 
the degree of regularity of different time series. Authors 
present some particular applications, among them, the use of 
ApEn for computing the regularity of the beat-to-beat HRV 
data derived from an ECG. In [94], a straightforward 
application of ApEn is proposed for the algorithm as a part 
of an implanted defibrillator. The device continuously 
monitors a patient's heart rate to detect the presence of 
fibrillation and repeatedly computes the ApEn of a series 
representing the fibrillation heart at a moment in time. When 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Data processing system for computing the ApEn (from [92]). 
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the ApEn value meets a predetermined relation with respect 
to a threshold value, the system activates an energy delivery 
unit to defibrillate the heart with a low level shock. The 
process continues until defibrillation is achieved.  

 In [95], and ICD is disclosed which includes a unit for 
detecting and classifying arrhythmia episodes based on an 
irregularity parameter and on a complexity parameter. In this 
case, the irregularity and complexity parameter selected is 
the SampEn, which is a modification of ApEn statistic, 
developed by Richman and Moorman in order to overcome 
the two major limitations of the ApEn, namely, the depen-
dence on the time series length and the relative consistence 
[96]. The irregularity parameter is computed over a cycle 
length data series, whereas the complexity parameter is 
computed over feature vectors extracted from the heart beats, 
so that this complexity parameter measures the morpho-
logical complexity. The arrhythmia detection and classifi-
cation is achieved by comparing the SampEn values, irregu-
larity and complexity parameters, with defined thresholds. 

Combination of Nonlinear Methods  

 There are also some patents that propose the use of one 
or more indices using different nonlinear methods (chaos, 
fractal and information methods). In [97], several indices 
(entropy indices, chaos dimensionality indices as scaling 
exponent or correlation coefficient) are obtained from the 
heart rate in order to determine the degree of randomness, 
and they are combined to establish a dynamic control of the 
heart rate. The indices are continuously monitored and, if the 
degree of randomness falls below a threshold value, this 
indicates that the heart rate may be too coherent, so that a 
warning signal is generated indicating a significant risk of 
onset of a tachyarrhythmia. The system, in order to prevent 
the tachyarrhythmia, delivers overdrive pacing, or if already 
initiated, a more aggressive therapy is applied. 

5. INVERSE PROBLEM IN ELECTROCARDIO-

GRAPHY 

 Methods for mapping the electrical activity of the heart 
have been receiving growing interest in order to accurately 
localize the origin of irregular beats, to identify their causes, 
and to deliver a proper treatment. Recent mapping systems 
aim to construct an instantaneous image of the epicardial or 
endocardial electrical activity of the heart from remote 
signals, measured on electrodes placed on the body surface 
or inside the cardiac chambers, respectively. Both the 
epicardial and endocardial mapping systems involve proces-
sing the ECG torso and the EGM signals to estimate the 
cardiac sources (potentials) from a number of probing 
electrodes which is referred as the Inverse Problem in 
Electrocardiography (IPE). The IPE is highly ill-posed due to 
the limited number of electrode sensors compared to the 
cardiac sources and the attenuation and spatial smoothing 
inside the torso (for epicardial mapping) or inside the heart 
(for endocardial mapping). Thus, inherent limitations of the 
IPE often results in oscillatory or non-physiological cardiac 
waveforms since small perturbations of the data, such as 
measurement errors or noise, result in large perturbation of 

the solution. To stabilize and to constrain the solution of the 
IPE, regula-rization techniques are needed, which represent a 
trade-off between measured data fit and a priori imposed 
constraints. The most popular realizations of regularization 
techniques are the SVD and zero-order Tikhonov 
regularization perfor-med by the regularized least squares 
(RLS) algorithm. Both regularization methods need, 
however, a priori knowledge of a free parameter whose value 
can significantly distort the results.  

5.1. Forward Problem  

 To solve the IPE previously requires, in general, 
modelling the physical relationship between the measured 
potentials, the epicardial or endocardial potentials and the 
electrical volume conduction medium defined by the torso 
and heart. This model may be represented as  

v p = A ve                                        (8) 

where vp is a Np x 1 vector representing the measured ECG 
or EGM signal on the probing electrodes, ve represents a Ne 
x 1 vector of electric potential, i.e. the electrical activity at 
the epicardium or endocardium , and A is the Np x Ne trans-
fer matrix accounting for the influence of the volume 
conductor medium (torso for epicardial mapping, blood for 
endocardial mapping). Therefore, matrix A is given by the 
geometry and the conductivity of the defined volume 
conductor. 

 The relationship expressed in Equation (8) constitutes the 
so-called forward problem from which the IPE can be stated. 
It is worth noting that the forward problem does not take into 
account the time dependence, since quasi-static conditions 
apply, that is, the electrical activity of the heart instanta-
neously creates a potential field within the whole body. 
Thus, for each time instant, a direct solution of the IPE could 
be obtained by inverting the matrix A. However, A is 
generally undetermined (Np << Ne) and ill-conditioned, and 
therefore this matrix cannot be directly inverted by conven-
tional methods. In consequence, regularizations techniques 
are to be used.  

 Following the two different approaches to the IPE, 
namely epicardial and endocardial mapping, related patens 
can accordingly be divided into two scenarios, as presented 
in the next subsections. 

5.2. Epicardial Mapping 

 The one-dimensional ECG recording constitutes a 
smooth projection of the three-dimensional electrical activity 
of the heart and in consequence the ECG signal might fail to 
localize certain bioelectric events of the heart. For this 
reason, a number of non-invasive methods to reconstruct 
epicardial potentials from ECG signals have been proposed 
giving rise to a number of work related patents see Fig. (4a). 
Patents associated to epicardial mapping have mainly 
focused on regularization methods to mitigate the ill effects 
of the IPE. 



Digital Processing for Cardiac Electric Signals (II) Recent Patents on Biomedical Engineering, 2009, Vol. 2, No. 1    43 

 In [5], an epicardial mapping method is proposed by 
using a rectangular array of 6x8 electrodes disposed on the 
front part region of torso surface nearest to the heart. This 
method assumes a prior knowledge of a selected forward 
model (matrix A) which is calculated by obtaining the 
geometry and conductivity of the volume conductor (torso 
and epicardium surfaces and interior organs) from compu-
terized tomography (CT) scan images. Their particular 
implementation provides an inverse solution based on the 
minimum relative entropy (MRE) criteria. The MRE is a 
frequency domain method that iteratively estimates the 
power spectrum of the epicardial potentials according to the 
selected forward model to fit the measured torso signal 
spectrum. 

 More recently [98], a torso vest containing 240 electrodes 
was developed to construct a body surface potential map 
(BSPM) from which inferring the electrical activity of the 
epicardium. A forward matrix A is also computed from the 
geometric model obtained by CT scan, magnetig resonance 
imaging (MRI) or X-ray. The inverse solution is performed 
by means of the generalized minimum residual (GMRes) 
which is an iterative method for inverting the matrix A 

without imposing constrains to the solution. 

 Instead of reconstructing the magnitude of the epicardial 
potentials, in [99] a three-dimensional map is built for 
parameters of interest associated with cardiac cell potentials, 
such us the depolarization or the repolarization time. For this 

purpose, the inventors used a cardiac source model accoun-
ting for the epicardial potentials (ve) from which a lumped-
parameter model was defined. States of this model were 
estimated by using an extended Kalman filter according to 
the residual difference between the measured ECG and the 
corresponding simulated ECG. This pseudo-ECG was 
computer-generated from the forward matrix A and the 
epicardial source model.  

 Other interesting approaches [100,101] extract infor-
mation about the cardiac electrical activity from the ECG 
signals, while not performing an inverse solution. In these 
patents, signals from the torso electrodes are processed to 
compute the two-dimensional Laplacian of the surface 
potential, which constitutes an alternative representation of 
the electrical activity of the heart. 

5.3. Non-contact Endocardial Mapping  

 Common electrophysiological studies measure the 
electric potentials present on the interior surface of the heart 
to localize regions of abnormal electrical behaviour, hence 
allowing for a proper diagnosis and treatment. These 
endocardial mapping procedures are traditionally performed 
by sequentially advancing an electrode catheter into contact 
with the endocardium in many locations along many 
heartbeats, and subsequently inferring endocardial activation 
maps from the set of measured EGM. However, traditional 
endocardial mapping systems present certain difficulties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Inverse problem in electrocardiography. (a) Acquisition system for epicardial mapping (adapted from [5]). (b) Acquisition system 
for endocardial inverse problem from multiple signals (adapted from [104]). 
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such us the limited number of electrodes being used and the 
long time consumption of the procedure. Therefore, 
alternative mapping systems are recently being introduced 
which take simultaneous measurements from an intracardiac 
non-contact electrode array to construct an instantaneous 
image of the endocardial electrical activity see Fig. (4b). To 
address the non-contact endocardial mapping problem in 
terms of the IPE different approaches have been proposed. In 
[102,103] a non-expandable non-contact multielectrode 
catheter to reconstruct the endocardial potentials and 
isochrones is disclosed. Different shapes of the terminal 
portion of the probe catheter were evaluated, including “J”, 
“U”, “O”, helix and pigtail curve shapes. Forward matrix A 
was generated based on the estimated geometry of the 
endocardium with X-ray and the a priori known geometry of 
the probe. Inverse calculation was implemented by using a 
Tikho-nov regularization algorithm whose free parameter 
was determined by the composite residual and smoothing 
operator (CRESO) method.  

 A non-contact expandable 24 electrodes catheter was 
developed [104] to produce a spherical geometric shape. 
Based on the characteristic shape of the probe, Laplace 
equation accounting for the relationship between the endo-
cardial potentials and the probe potentials can be calculated 
analytically and thus the electrical activity of the selected 
heart chamber is reconstructed. As mentioned in different 
patents, the accuracy of the inverse reconstruction increased 
with increased number of electrodes in the probe catheter. 
Under this consideration, in [105] a non-contact endocardial 
mapping system is designed which includes a moving probe 
to increase the number of measured signals and hence 
improving the inverse calculation. This moving catheter, 
however, requires a complicated location and synchroni-
zation system in order to properly combine the information 
obtained from different locations. Also, a RLS algorithm is 
selected as the regularization method. 

 In [106], the work is focused on a regularization tech-
nique for the non-contact endocardial mapping, with 
potential application to other inverse problems. A Duncan 
and Horn formulation of the Kalman filter is proposed, 
which is a temporal iterative method based on constraining 
the solution not to vary from one time instant to the other. 

 Inventors in [107] state that the distribution of the surface 
charge or of dipole densities in the heart chamber is a much 
better indicator of cardiac arrhythmias than electric poten-
tials. Based on this assumption, firstly the electric potential 
at the endocardium is determined by contact or non-contact 
mapping procedures. Then, endocardial potentials are 
transformed into surface charge densities or dipole densities 
according to the Electromagnetic Field Theory. 

 Lastly, pace mapping systems are to be considered. They 
do not state a forward and inverse formulation, but still they 
allow identifying intracardiac arrhythmogenic foci. [108, 
109]. In a first state, an arrhythmogenic situation is induced 
and the effect is visualized in the surface ECG. Then the 
cardiac chamber is mapped in different locations and paced 
in selected potential foci. ECG signals obtained during 

pacing are compared to arrhythmia induced ECG signals. 
The location from which pacing results in the same ECG is 
considered to be the origin of the arrhythmia. 

6. CURRENT & FUTURE DEVELOPMENTS 

 Applications of digital signal processing include signal 
conditioning, noise reduction, cardiac event sensing, heart 
dynamics visualization, arrhythmia detection, monitoring of 
patient’s physiological condition and sudden cardiac death 
risk stratification and prediction. A large number of patents 
on digital processing techniques with application in electric 
cardiac signal analysis continue to be disclosed every year. 
In this review, representative examples of the most relevant 
topics have been compiled and briefly described. Usually the 
algorithm is linked to an apparatus and patents for signal 
processing procedures do not come alone.  

SCD Prediction 

 A number of works have been developed on HRV 
characterization claiming its utility as a clinical tool. This 
trend is expected to continue due to the promising results 
that have been obtained. Many of the patents on HRV, 
besides analyzing the HRV signal, present a complete 
system, first extracting the ECG signal and constructing the 
HRV signal. Most of them apply both temporal and spectral 
methods for the HRV measurement in order to improve its 
characterization.  

 Recent clinical works have presented the TWA as a 
strong marker of cardiac electrical instability and several 
patents have been presented for TWA detection, both in the 
surface ECG and in the intracardiac EGM. Some of the 
revised patents focus only on the detection stage, while 
others also include postdetection therapy. Despite their low 
intensity, TWA detection on the ECG has the significant 
advantage of been a non-invasive tool over detection on 
EGM. Further works are expected to be disclosed in both 
branches due to their useful clinical applications. 

Advanced Algorithms 

 The diverse nature, aims, and scope of patents involving 
digital signal processing in cardiac electrophysiology, show 
that these techniques have a broad range of applications. 
Taking electric signals such as surface ECG and intracardiac 
EGM as the input, the techniques of digital signal processing 
that we have encountered range from basic methods, such as 
signal filtering, to more advanced ones, such as wavelet 
transform and non-linear analysis. Chronologically, we have 
observed that the use of processing methods follows the 
same trends as in other areas of research. Thus, the early 90’s 
saw the emergence of non-linear analysis, including chaos, 
fractals, and entropy measurements.  

 Advanced signal processing techniques have been 
applied for two main purposes, namely: Signal denoising 
(which comprehends noise removal as well as signal 
compression and foetal ECG extraction), feature extraction, 
and cardiac event detection and classification. Algorithms 
addressing signal denoising usually employ WT analysis and 
statistical methods (PCA and ICA). In particular, noise 
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removal on EGM has been achieved using WT; ECG signal 
compressions has been performed using PCA, whereas foetal 
extraction from maternal-foetal ECG has been developed 
using, preferably, ICA techniques. Feature extraction for 
morphological analysis is also based on WT and statistical 
methods. Nonlinear methods are usually used in cardiac 
event detection and classification due to the fact that these 
methods commonly provide with a single value which can 
quantify the complexity (chaos theory methods), correlation 
properties (fractal theory methods) and irregularity (infor-
mation theory methods) of the signal. This value can be used 
straightforwardly to distinguish between different cardiac 
states or events which have different degrees of complexity. 

 A problem shared by advanced methods is the high 
computational cost. These methods are usually both time and 
memory consuming. Such limitation implies that these 
algorithms are hard to implement in small devices as ICD or 
Pacemakers. Therefore, it is necessary to develop new 
algorithms, computationally less demanding, in order to 
overcome this restriction. An example in this direction is 
ApEn, which is a method to estimate the entropy of short 
data series, overcoming the need for long series as in 
classical entropy estimation methods. In fact, some patents 
presented in this paper implement the ApEn algorithm in 
ICDs in order to distinguish between different arrhythmias.  

Inverse Problem in Electrocardiography 

 Since the first applications of digital signal processing to 
electric cardiac signals measured on electrode systems, many 
efforts have been made to visualize the complex bioelectric 
patterns that propagate on the internal or external surface of 
the heart. Patents devoted to the IPE highlight this situation 
where a number of inventions dating from the early 90’s. 
Since then, a great advancement has been documented in the 
three-dimensional representation of heart and torso geo-
metric models. Conversely, little improvements can be 
assessed in the solutions of the IPE, which always demons-
trate a limited scope. Specifically, epicardial mapping 
inventions draw attention to the regularization techniques to 
tackle the IPE. Nevertheless, the proposed solutions do not 
provide accurate enough results then limiting their potential 
use in real medical settings. On the other hand, patents 
associated to the non-contact endocardial mapping focus on 
the signal acquisition and electrodes positioning systems 
rather than the signal processing regularization procedures 
which are normally based on traditional Tikhonov tech-
niques.  

 Even so, commercial approaches for non-contact 
endocardial mapping procedures have been recently 
presented. These systems have reactivated the interest for 
clinicians, researchers and manufacturers in utilizing non-
contact techniques in electrophysiological studies. However, 
the accuracy of the reconstructed electrical information is 
still inferior to present mapping systems and this situation 
has restricted its application in the EP laboratories. There-
fore, challenges of future inventions regarding epicardial or 
endocardial mapping systems should consider providing 

detailed anatomical reconstruction as well as accurate 
electrophysiological characteristics. 

 In general terms, given the large number of items that 
have been presented all around the world in these last years, 
any attempt to summarize all of them in some few pages will 
be too limited and hence, this work aimed to be just an 
overview on the most significant applications. We want to 
stress that we did not exclude from consideration those 
disclosed patents which have not yet been subsequently used, 
because they could still become relevant. Nevertheless, 
additionally to the review of scientific literature, the review 
of the patents in this environment can give us an excellent 
landscape on what has happened and what could be 
happening in the near future. 
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