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Detection of Life-Threatening Arrhythmias Using
Feature Selection and Support Vector Machines
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Abstract—Early detection of ventricular fibrillation (VF) and
rapid ventricular tachycardia (VT) is crucial for the success of
the defibrillation therapy. A wide variety of detection algorithms
have been proposed based on temporal, spectral, or complexity
parameters extracted from the ECG. However, these algorithms
are mostly constructed by considering each parameter individu-
ally. In this study, we present a novel life-threatening arrhythmias
detection algorithm that combines a number of previously pro-
posed ECG parameters by using support vector machines clas-
sifiers. A total of 13 parameters were computed accounting for
temporal (morphological), spectral, and complexity features of the
ECG signal. A filter-type feature selection (FS) procedure was pro-
posed to analyze the relevance of the computed parameters and
how they affect the detection performance. The proposed method-
ology was evaluated in two different binary detection scenarios:
shockable (FV plus VT) versus nonshockable arrhythmias, and
VF versus nonVF rhythms, using the information contained in the
medical imaging technology database, the Creighton University
ventricular tachycardia database, and the ventricular arrhythmia
database. sensitivity (SE) and specificity (SP) analysis on the out
of sample test data showed values of SE = 95%, SP = 99%, and
SE = 92%, SP = 97 % in the case of shockable and VF scenarios,
respectively. Our algorithm was benchmarked against individual
detection schemes, significantly improving their performance. Our
results demonstrate that the combination of ECG parameters us-
ing statistical learning algorithms improves the efficiency for the
detection of life-threatening arrhythmias.

Index Terms—Feature selection (FS), support vector machines
(SVM), ventricular fibrillation (VF) detection.

I. INTRODUCTION

UDDEN cardiac arrest (SCA) is a major health problem
S that accounts approximately for six millions deaths in Eu-
rope and in the United States [1]. SCA is a sudden, abrupt
loss of heart function, most often caused by a rapid ventricu-
lar tachycardia (VT) that quickly degenerates into ventricular
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fibrillation (VF). Prompt detection of VT and VF episodes is
crucial to deliver an electric shock therapy and in this way in-
crease the probability of survival from a SCA incident. This has
impelled the development of automated external defibrillators
that analyze the surface electrocardiogram (ECG) signal and
advise/deliver and electric shock if either rapid VT or VF is
detected. However, though extensively tested and studied dur-
ing the last decades both by the industry and by the scientific
community, reliable detection of life-threatening arrhythmias
remains an open problem [2]—[5].

A wide variety of detection algorithms have been developed
based on temporal/morphological [4]-[8], spectral [9], [10], or
complexity parameters [11]-[14] extracted from the ECG sig-
nal. For each detector, different separation scenarios have been
considered [7], such as VF versus nonVF rhythms, VF plus
VT versus nonVTVE, or VF versus VT, making it difficult to
assess the real performance of the proposed algorithms. When
compared in a standardized way [4], their real performance is
reduced from the values presented in the original investigations.
The combination of ECG parameters using machine learning
techniques, such us neural networks [15]-[17], or support vec-
tor machines (SVM) [18]-[20], has been suggested as a useful
approach to improve the detection efficiency. This strategy, how-
ever, raises additional requirements to be considered. First, the
need of feature selection (FS) techniques to select those relevant
and informative parameters in order to increase the efficiency of
the learning task, to improve the performance of the detection
process, and to better understand how data affect the learning
process [18], [21]-[23]. And second, the evaluation and com-
parison of the proposed algorithms should be assessed over the
out of sample test set. Broadly, this task has been carried out
over the entire [12], [24] or the validation [20] datasets, making
it difficult to compare different detection strategies.

The present study aimed to build a high-performance life-
threatening arrhythmias detector by combining 13 previously
defined ECG parameters using SVM learning algorithms. In
this context, the objective is twofold: to assess the performance
of the proposed SVM detection algorithm over previously de-
fined methods by carrying out a comparative analysis on the
out of sample test data. The second aim was to examine the
discriminatory properties of each ECG parameter individually
and how, in combination, these affect the learning process. We
used a novel FS filter-type method based on combining three
different FS filter-type techniques into a single ranking score,
allowing us to determine the relevance of each ECG parameter.
Using this score, we applied a backward selection procedure
with SVM classifiers to yield a robust classifier using a reduced
set of ECG parameters. Previous studies have used genetic
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algorithms (GA) [20] or discriminant analysis [24] as FS
methodology. In [20], a subset of nine features was selected us-
ing GA. However, this procedure did not provide a score metric,
and therefore, it required to analyze all possible combination of
a subset of selected features, which could be a heavily computa-
tionally expensive task, especially when the number of selected
features increases. On the other hand, the discriminant analysis
procedure [24] only accounts for linear relationships among fea-
tures and labels, thus, missing possible nonlinear information
that might be of relevance.

The proposed methodology is here applied in two differ-
ent binary detection scenarios: shockable (FV plus TV) versus
nonshockable arrhythmias, and VF versus nonVF rhythms. We
used the public databases medical imaging technology database
(MITDB) [25], the Creighton University Ventricular Tachy-
cardia Database (CUDB) [26], and the MIT-BIH Malignant
Ventricular Arrhythmia Database (VFDB) [27], to evaluate our
algorithms, showing that the results significantly outperform
individual detection schemes.

We note that a preliminary version of this paper appeared
in [19], showing the usefulness of SVM classification method-
ology for the detection of life-threatening arrhythmias. Here, we
present a much-extended version of this study that includes: 1)
two additional ECG parameters [5], [14]; 2) comparative anal-
ysis with previously defined detectors on the out of sample test
set; and 3) a novel FS procedure that provides with insights
about the relevance of each ECG parameter and the learning
process using SVM algorithms.

The paper is organized as follows. Section II shows the pre-
processing steps to build the dataset of computed parameters
from the ECG signal databases. Section III provides a brief
background on SVM classifiers and bootstrap resampling tech-
niques. In Section IV, the FS method used in this study, and
the algorithm combining FS and SVM classifiers are explained.
Then, the detection performance of the proposed methodology
is presented in Section V. Finally, discussion and conclusions
are drawn in Section VI.

II. FEATURE CONSTRUCTION

This section illustrates the process of building the input space
data to feed the SVM classifier from the ECG raw data signals.

A. ECG Collection

We used the complete ECG signal recording files from the
MITDB, the CUDB, and the VFDB, which are available at
the PhysioNet repository [28]. The MITDB contains 48 Holter
recording files of slightly over 30-min length, two channels per
file, sampled at 360 Hz. The MITDB includes 15 rhythm labels
differentiating between VT, ventricular fluter (VFL), normal
sinus rhythm (NSR), among other rhythms. The CUDB contains
35 Holter records of 8-min length from patients who experienced
episodes of sustained VT, VFL, and VF. Each record is sampled
at 250 Hz and includes only two rhythm annotations, namely,
VF and nonVFE. The VFDB contains 22 files of 30-min length,
two channels per file, sampled at 250 Hz. As the CUDB, the
VEDB includes patients who experienced episodes of sustained
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VT, VFEL, and VF. In this database, annotation labels contain 15
different rhythms, including VT, VF, VFL, NSR, among other
rhythms.

B. Preprocessing

All ECG signals were preprocessed using the filtering process
proposed in [4], which works in four successive steps: 1) mean
subtraction; 2) five-order moving average filtering; 3) high-pass
filtering with f. = 1 Hz (drift suppression); and 4) low-pass
Butterworth filtering with f, = 30 Hz. Then, noise, asystole,
and low-quality (artifacts) episode segments were removed ac-
cording to the corresponding annotation labels. Finally, only the
first channel of the MITDB and the VFDB has been considered,
to avoid redundancy of samples during the learning process.

C. ECG Parameters

Each preprocessed ECG signal is divided in nonoverlapping
8-s segments. This window length has demonstrated to give the
best performance in a number of investigated detection algo-
rithms [4]. For each L, = 8 s segment, a set of 13 previously
defined parameters were computed. These can be broadly clas-
sified in three major categories (a detailed explanation of each
parameter can be found at the original manuscripts).

1) Temporal/Morphological Parameters: are defined in the
time domain.

e Threshold crossing interval (TCI) [6] is the time interval

between consecutive pulses (threshold crossings) within
a 1-s ECG segments. TCI requires a 3-s window to be
computed. On a L, duration episode, TCI is evaluated by
averaging L, — 2 consecutive values.

e Threshold crossing sample count (TCSC) [5] refers to the
number of samples that cross a given threshold V;, within
a 3-s ECG interval. On a L, duration episode, TCSC is
evaluated by averaging L. — 2 consecutive TCSC values.

e Standard exponential (STE) [4] is calculated as the ratio
between the number of crossing points of the ECG signal
with a decreasing exponential curve centered at the time
instant where maximum amplitude value occurs, and the
time duration of the considered ECG segment L.

® Modified exponential (MEA) [4] first adjusts a decreasing
exponential function positioned at the peak values of an
ECG segment. Then, MEA is computed as ratio between
the number of liftings, and the time duration of the consid-
ered ECG segment L, .

e Mean absolute value (MAV) [7] is the MAV of 2-s ECG
segments. On a L, duration episode, MAV is obtained by
averaging L. — 1 consecutive 2-s values.

2) Spectral parameters: are calculated in the frequency

domain.

e VF filter (VFleak) [10] is a measure of the residue after ap-
plying a narrowband elimination filter centered at the mean
signal frequency of the considered ECG signal segment.

e Spectral algorithm (M and A2 parameters) [9] analyzes the
energy content in different frequency bands by means of
Fourier analysis. Let I be the peak frequency (component
with largest amplitude) in the range of 0.5-9 Hz. Then, M
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measures of the frequency content between 0 and the min-
imum of (20 F, 100 Hz), while A2 measures the frequency
content between 0.7 and 1.4 F.

e Median frequency (FM) [29] is the central frequency of the
spectral mass contained in the power spectrum of the con-
sidered ECG signal segment. This parameter was defined to
estimate the duration of the cardiac arrest, and therefore it
has not been usually use for detection purposes. However,
since it provides information about the duration of the VF
episode, we included it here to analyze its discriminatory
properties.

3) Complexity parameters: provide with different measures

of the complexity of the ECG signal.

e Complexity measurement (CM) [11] is the normalized
value of the Lempel-Ziv complexity measure of a binary
sequence extracted from the ECG signal segment.

® Phase space reconstruction (PSR) [12] measures the spar-
sity of the phase plot representation when considering the
original ECG signal segment and a time-delayed version
of it.

e Hilbert transform (HILB) [13] measures the sparsity of the
phase plot representation when considering the original
ECG signal segment and its HILB signal.

e Sample entropy (SpEn) [14] is a measure of similarity
within an ECG signal segment. A lower value of SpEn
indicates more self-similarity. Thus, VF/VT rhythms are
characterized by higher values os SpEn.

After computing all the aforementioned parameters, labels
were assigned to each 8-s segments. In order to analyze the VF
versus nonVF, and the shockable versus nonshockable prob-
lems, we considered three types of rhythms labels: VF (includ-
ing VFL), VT, and other rhythms (O). Labels were assigned
according to the mode of the annotation samples within the an-
alyzed segment. For instance, in a transition ECG segment in
which 40% of samples are labeled as NSR and the remaining
samples are labeled as VF, then we labeled the whole segment
asa VF.

The parameterization of the ECG signal segments resulted
in a dataset of binary labeled data {(x1,91),...,(xXn,yn)},
where x; € R?, with d = 13 (number of computed parame-
ters), N = 17857 (number of 8-s segments), and labels y; €
{41, —1}. Two binary detection scenarios were considered:
VF episodes versus nonVF, and shockable (VF plus VT) ver-
sus nonshockable rhythms. Both problems resulted in unbal-
anced datasets with the following prior probabilities: VF ver-
sus nonVFE, (p.1 = 4.8%, p_1 = 95.2%); and shockable versus
nonshockable, (p11 = 8.5%, p_1 = 91.5%). Before the clas-
sification process, each input feature example x/) € RN was
scaled so that 0 < x(7) < 1.

III. SVM CLASSIFIERS

We used two different SVM classifiers to discriminate VF ver-
sus nonVF rhythms, and shockable versus nonshockable (from
now on Shock versus nonShock) episodes by using the dataset
of parameters extracted from the ECG signals. This section
briefly reviews the SVM algorithm formulation and the boot-

strap resampling method to estimate the performance of the
SVM classifiers.

A. SVM Formulation

In recent years, SVM algorithms have been successfully used
in a wide number of practical classification problems [30],
due to their good generalization capability derived from the
structural risk minimization principle [31]. SVM binary clas-
sifiers are sampled-based statistical learning algorithms that
construct a maximum margin separating hyperplane. Given a
training dataset {(x1,%1), ..., (xy,yn)}, where x; € R? and
y; € {—1,+1}, SVM solves a quadratic optimization problem

N
1 2
in - C iy
min 2 lw|* + ;5

subject to y; ((p(xi),w) +b) —14+& >0,
gi207i:1a"'7N (1)

where ¢(x;) is a nonlinear transformation that maps training
data to a higher dimensional space, &; represent the losses, and C
is a regularization parameter that represents a trade-off between
the margin and the losses. By using Lagrange multipliers, (1) can
be rewritten into its dual form, and then, the problem consists
of solving

N N
1
max Zaq‘, 3 Z iy K (%, %;) @

i=1 ij=1

constrained to 0 < «; < C' and Z?;l a;y; = 0, where «; are
the Lagrange multipliers corresponding to primal constraints,
and K (x;,%;) = (¢(x;), ¢(x;)) is the kernel function, which
allows us to calculate the dot product of pairs of vectors trans-
formed by ¢(-) without explicitly knowing neither the nonlinear
mapping nor the higher dimensional space. We used the Gaus-
sian kernel in our experiments

K(xi,%x;) = exp (=[x — %) €)

After obtaining the Lagrange multipliers, the SVM classifi-
cation for a new sample x is simply given by

N
Yy = sgn (Zaiyil((xi7x)+b> ) 4)
i=1

The free parameters of the SVM model v and C have to be
settled a priori. Methods such as cross validation can be used
for this purpose.

B. Bootstrap Resampling

Bootstrap resampling is a computer-based method for
nonparametric estimation of the distribution of statistical
magnitudes, and it can be used to estimate the performance
of SVM classifiers [18]. Let V = {(x1,41),--., (Xn,yn)} be
a set of data in a classification problem. A bootstrap resam-
ple V* = {(x},y}),..., (X,yy)} is a new dataset drawn at
random with replacement from sample V. Let us consider a par-
tition of V in terms of the resample, givenby V = (V! |V}

in? out)’
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being V; and V;  the subsets of samples included and
excluded in the resample, respectively. For the resample r,
the SVM classifier can be trained with V7, and its perfor-
mance P*(r) can be estimated by using Vout, in terms of
a predefined metric such as the accuracy, or the error proba-
bility. Then, given a collection of R independent resamples,
{V*(1),V*(2),...,V*(R)}, the performance density function
can be estimated by the histogram built from replicates P*(r),
where r = 1,..., R. A typical choice for R is from 100 to 500
resamples.

IV. FEATURE SELECTION

Performance of supervised learning algorithms can be
strongly affected by the number and relevance of input vari-
ables. FS techniques aim to find the best describing subset of the
input variables, compared to the original set of features [32]. FS
techniques can be divided into three major categories, namely,
filter, wrapper, and embedded methods.

In this study, we estimated the relevance of the computed
parameters by applying a combination of filter-type FS pro-
cedures. From here on, we will use the terms parameters and
features indistinctly. Filter methods are general FS procedures
that rank the features according to a predefined evaluation cri-
terion, which is independent of the machine learning classifier.
Examples of filter methods include correlation criteria, classi-
cal test statistics (X2 -test, F-test, t-test), principal/independent
component analysis, mutual information techniques, classifica-
tion trees, self-organizing trees, or fuzzy clustering.

A. Combined Filter Methods Procedure

Following a similar approach as in [33], we considered a
combined strategy of filter methods, accounting for correlation-
based methods (correlation criterion and the maximum separa-
bility Fisher criterion), and mutual information methods (mini-
mal redundancy maximal relevance -mRMR- criterion [34]).

1) Correlation criterion: asses the degree of dependence of
individual parameters with the outcome. For the jth feature x (/)
with labels y, the linear correlation coefficient is defined as

z;‘w Y — )y —7)
\/E 25 (i — )?

where 11; represents the mean value for samples of feature x(),
and y is the average of outcomes. Note that —1 < p < 1. Larger
absolute values of p indicate higher linear correlation between
xU) and y, whereas they are uncorrelated if p approaches to
Zero.

2) Fisher criterion: measures the ability of the jth feature to
separate between two sets of labeled data (positive and negatives
instances) by computing the F-score as

(&)

_MJ

Ly )+ ply-)?
FO= oty v o) ©
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where p(y+) = pj + — pj represents the difference between the
average of the jth feature for the positive/negative classes i +
and the whole set of samples ;. In the denominator, o (y4 ) is
the sample variance of the positives/negative instances and can
be calculated as 0 (y+) = = 2./, (V) — p1j.1)% being ny
the number of positive/negative samples The larger the value
of F(j), the more likely this feature is discriminative.

3) mRMR Criterion: both correlation and Fisher criteria are
computationally easy and fast, but they do not reveal mu-
tual information among features (apart from linear correlation).
Therefore, we also applied the mRMR criterion, which aims at
maximizing the mutual information between the outcomes and
the feature distribution while minimizing the redundancy be-
tween features, according to the following expression:

X

ma {S| Z MI(x\) | y)—

xli)es

1 () (k)
= > MIxY, x®) (7
|51 xU) x(h) eg

where MI(z,y) accounts for the mutual information among
variables x and y, and | S| represents the size of the feature set.

Fig. 1(a) represents the normalized absolute value of the
scores provided by the three filter methods under considera-
tion, for both the VF versus nonVF (black bars), and the Shock
versus nonSchock (white bars) problems. The closer to one the
score is, the more relevant the feature is considered. The correla-
tion criterion showed a number of parameters as relevant, while
F-score and mRMR are more conservative standing TCSC out as
the most relevant feature. This result is emphasized in Fig. 1(b),
in which the scores of individual filter methods are combined
to provide a single score for each parameter. This combined
score is calculated as the normalized absolute value of the ele-
ment multiplication of the individual scores. According to the
combined score, TCSC is clearly more relevant than the rest of
parameters. Besides TCSC, SpEn and VFleak are also likely to
be highly relevant features. The final score and ranking of the
ECG parameters is presented in Table 1.

B. FS With SVM Classifiers

Following a similar approach as in [35] and [36], we com-
bined the above mentioned filter FS procedure and SVM al-
gorithms in order to build a high-performance classifier. The
list of ranked features presented in Table I provided with an
estimate of how valuable an ECG feature is for the detection
problems under analysis. We applied a backward selection pro-
cedure: starting from the completed dataset, we progressively
eliminated the less relevant feature according to Table I, and then
estimated the performance of the SVM classifier using bootstrap
resampling (we set R = 500). The FS-SVM procedure is sum-
marized in Algorithm 1. Using this algorithm, the performance
of the SVM classifier for different subsets of ranked features
can be estimated.
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Normalized feature ranking weights using (a) individual scores criteria: correlation, Fisher, nRMR; and (b) combination of individual scores. Black bars
correspond to the VF detection problem, whereas white bars represent the shockable rhythms detection scenario.

TABLE I
SCORE AND RANKING ANALYSIS OF ECG PARAMETERS

VF vs nonVF Shock vs nonShock
Parameter  Score | Parameter  Score
TCSC 1.0 TCSC 1.0
SpEn 0.27 | SpEn 0.26
VFleak 0.17 VFleak 0.22
HILB 0.09 | PSR 0.08
M 0.06 | M 0.08
PSR 0.05 | MEA 0.07
MEA 0.04 | HILB 0.04
CM 0.02 | STE 0.04
TCI 0.02 | FM 0.01
STE 0.02 | TCI 0.01
FM 0.01 A2 0.00
A2 0.01 MAV 0.00
MAV 0.00 | CM 0.00

Algorithm 1 : FS-SVM algorithm

D

2)
3)

8)

Sort the features according to the combined-filter score s, being s[1]
the highest score variable and s[d] the lowest scored, respectively, and
d the number of features of the input space.

Initialization: V = {X(:,s),y}, j = d.

Repeat:

a) Train the SVM classifier using {X(:, s[1 : j]),y}, and calculate
the free parameters (Cj, ;).

b j=j—L

Until j = 0.

Start with complete dataset V = {X(:,s),y}, j =d.
Build R paired bootstrap resamples V* = {X*(:,s),y*}
Repeat:

a) For each bootstrap resample 7, compute the performance of
the SVM P*(r), r = 1,...,R using the calculated free
parameters (C, ;).

b) Remove the feature with the lowest score.

c) V* ={X*(,s[l:j]),y*}

d j=7—-1

Until j = 0.

V. RESULTS
A. Individual Parameters Performance

First, we studied the discrimination ability of the calculated
ECG parameter by analyzing their corresponding receiver oper-
ating characteristics (ROC) curve obtained by using the entire
dataset. The performances of the detection parameters were as-
sessed in terms of the area under the ROC curve (AUC) and by
evaluating the sensitivity (SE), i.e., the proportion of correctly
detected VF/Shockable observations, and the specificity (SP),
i.e., the proportion of correctly identified nonFV/nonShockable
samples. SE and SP are calculated as

TP
SE= ——— 3)
TP + FN
TN
SP=———
TN + FP ©)

where TP represents the number of true-positive decisions, FN
the number of false-negative decisions, TN the number of true-
negative decisions, and FP the number of false-positive deci-
sions. The results of the ROC analysis are presented in Ta-
ble II. For both VF versus nonVF and Shock versus nonShock
problems, the TCSC parameter obtained the best performance,
hence supporting the original study [5]. Also, VFleak and SpEn
showed high values of SE and SP. The performances of PSR and
HILB are quite acceptable. However, this result differs from the
original investigations [12], [13], but it is similar to other stud-
ies [5]. Note that the performance results presented in Table II
are highly correlated with the scores and ranking shown in
Table I, thus demonstrating that the proposed FS procedure is
an interesting method for evaluating the individual performance
of a set of ECG parameters.

B. SVM Performance

In this experiment, we aimed to analyze the performance
of the SVM algorithm when using the complete set of ECG
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TABLE I
ROC ANALYSIS FOR THE COMPUTED PARAMETERS USING
THE COMPLETE DATASET

VF vs nonVF Shock vs nonShock
Param  AUC SE* SP® AUC SE* Spb
TCSC  0.96 75 92 0.98 92 96
SpEn 0.94 77 90 0.96 83 93
VFleak 0.95 73 89 0.97 82 93
PSR 092 74 85 095 85 92
HILB 092 75 80 0.94 76 86
MEA 0.92 70 83 095 80 91
M 091 71 T2 0.95 81 82
A2 0.88 34 74 0.90 51 72
TCI 0.89 49 68 092 65 76
FM 0.84 56 41 0.85 56 53
STE 0.83 48 47 0.88 62 58
MAV 0.72 24 18 0.79 43 26
CM 0.80 23 47 0.78 25 37

2 Sensitivity(%) for a 95% specificity.
b Specificity(%) for a 90% sensitivity.

parameters. Thus, the complete dataset was used as the input to
the SVM detector. A random subset of the input space (70%)
was used for training while the remaining data were used as test
set. Given that the datasets associated with the two problems
under analysis were unbalanced, weights were assigned to each
class. In addition, we used the balanced error rate (BER) [32]
as the metric to set the free parameters (C,7y) of the SVM by
following a fivefold cross-validation strategy over the training
set. The performance of the SVM detector was assessed using
the ROC analysis in terms of SE, SP, AUC and of the positive
predictivity (PP), the accuracy (ACC) and the BER calculated
over the test set as
TP

PP= —
TP + FP

(10)

Shock vs nonShock

08

0.7

06

Sensitivity

0.4

03F

02F

01F

0 L L L 1 L L L
0 01 0.2 03 0.4 05 06 0.7 0.8 08 1

1-Specificity

(b)

ROC curves calculated on the out of sample test set for the (a) VF versus nonVF problem, and (b) shockable versus nonshockable scenario.

TN + TN

ACC= —— 11

cc PC + NC (i
1 /FN FP

BER = - | — + — 12
2<PC+NC> (12)

where PC = TP + FN and NC = TN + FP.

The performance of the SVM was benchmarked against the
TCSC, SpEn, and VFleak parameters, as shown in Table III.
Both in the VF and the shockable rhythms scenarios, the SVM
classifier outperformed individual detectors in all analyzed met-
rics. The McNemar’s test showed that these differences in per-
formance were statistically significant (p-value < 0.001). A
complete perspective of the performance of the SVM algorithm
can be seen in Fig. 2, which represents the ROC curves for the
SVM algorithm, and the TCSC, SpEn, and VFleak parameters
for both the VF versus nonVF [panel (a)] and the Shock versus
nonSchock scenarios [panel (b)].

Table IV shows the performance of the analyzed algorithms
per arrhythmia type. Besides ventricular arrhythmias (VT, VFL,
VF) and NSR, supraventricular rhythms have been included in
the table since they might produce misclassification when dis-
criminating ventricular rhythms. In almost all types of rhythms
and in both detection problems, the SVM surpass (if possi-
ble) the individual detectors. Note that in the VF detection
scenario, VT is poorly classified by all algorithms showing
that the separability of VT and VF/VFL rhythms is difficult
to achieve. With respect to individual detectors, TCSC be-
haves moderately well to detect shockable rhythms but fails
to discriminate VT and VFE. VFleak is able to detect shock-
able rhythms very accurately, but does not discriminate VT
and VF and behaves poorly with supraventricular arrhythmias.
SpEn discriminates VT and VF better that TCSC and VFleak,
but shows inferior performance when classifying shockable
rhythms.
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TABLE III
COMPARATIVE ANALYSIS (METRICS IN %) OF THE SVM DETECTOR (TEST SET)

VF vs nonVF Shock vs nonShock
SE SP PP ACC BER AUC SE SP PP ACC BER AUC
SVM 91.9 971 616 96.8 5.5 98.7 95.0 99.0 89.7 98.6 3.0 99.4
TCSCt 881 935 40.9 93.2 9.2 96.1 86.7 96.7 T70.9 95.8 8.3 98.3
SpEn' 84.6 94.7 44.7 94.2 10.36 95.9 77T 972 724 955 125 97.0
VFleak? 88.0 91.9 35.8 91.7 10.0 94.7 90.6 954 64.8 95.0 7.0 96.9

T McNemar’s test p-value < 0.001.

TABLE IV
SVM PERFORMANCE (ACCURACY IN %) PER ARRHYTHMIA Type! (TEST SET)

VF vs nonVF Shock vs nonShock
Rhythm SVM  TCSC  SpEn  VFleak SVM  TCSC SpEn  VFleak
NSR 99.1 95.4 96.4 94.3 98.7 95.4 96.4 94.3
AFIB 100.0 100.0 100.0 99.3 100.0 100.0  100.0 99.3
AFL 100.0  100.0 73.1 73.1 100.0  100.0 73.1 73.1
SVTA 98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2
SBR 100.0 100.0  100.0 98.4 100.0 100.0  100.0 98.4
VT 41.9 15.1 31.3 6.0 96.0 84.8 68.7 93.9
VFL 100.0  100.0 65.2 91.3 100.0  100.0 65.2 91.3
VF 91.1 86.9 86.5 87.8 93.7 86.9 86.5 87.8

TAcronyms; NSR: normal sinus rhythm, AFIB: atrial fibrillation, AFL: atrial flutter, SVTA:
supraventricular tachycardia, SBR: sinus bradicardia, VT: ventricular tachycardia, VFL:
ventricular flutter, VF: ventricular fibrillation.

TABLE V

I . I g
o—VF VE
14k 5m§12,"m3hock 1 ANALYSIS (METRICS IN %) OF THE FS+SVM DETECTOR (TEST SET) FOR THE
SHOCK VERSUS NONSHOCK SCENARIO

SE SP PP ACC BER AUC
FS+SVMT 93.6 98.8 883 984 3.7 99.4
SVM 95.0 99.0 89.7 98.6 3.0 99.4

T McNemar’s test p-value = 0.128.

metric (y-axis), using M ranked features (x-axis) for the two
detection problems under consideration.

In the case of VF detection, the BER improves as the number
of features increases, showing that the SVM classifier requires
the information of all features due to the complexity of the
problem. Thus, the classification model could not be simpli-

T s 4 s s 7 s s 1w 1 12 13 fiedif the performance is to be maximized. On the other hand,
Number of features in the shockable classification scenario, the mean BER value

Fig. 3. BER metric (in %) analysis with respect to the number of features: slightly increases from 13 to 9 features, from which the perfor-
mean (central line), and 95% confidence interval (gray area). mance more rapidly decreases as the number of features reduces.
Hence, we set M = 9 features to build a simplified SVM detec-

tion model, whose performance over the test set is summarized

C. SVM Performance Using FS in Table V. Selected feature were: TCSC, SpEn, VFleak, PSR,
M, MEA, HILB, STE, and FM. The McNemar’s test showed

Given that it might be possible that not all the computed pa- g statistical differences in performance between the completed
rameters are relevant for detection purposes, we studied the use-  4nd the reduced models.

fulness of the calculated ECG features to construct a simplified
and robust detector. For doing this, we combined FS techniques
with SVM classifiers by following Algorithm1. Fig. 3 shows the
mean (red central line) and the 95% confidence interval (gray In this study, a novel detection algorithm that combines ECG
area) of the estimated SVM performance, in terms of the BER  parameters with SVM to identify VF/shockable arrhythmias has

VI. DISCUSSION AND CONCLUSIONS



ALONSO-ATIENZA et al.: DETECTION OF LIFE-THREATENING ARRHYTHMIAS

been presented. Together with this algorithm, a FS procedure
has been used to further analyze the discriminatory properties
of the extracted ECG parameters. Given that, in general, par-
simonious detection models provide better prediction, the pro-
posed FS method has been combined to the SVM algorithm to
provide a robust classifier using a reduced set of ECG param-
eters (for shockable rhythms). The detection performance of
the developed methodology is remarkable, and it significantly
outperforms previous proposed detection algorithms.

We used the complete records of the MITDB, CUDB, and the
VFDB. No preselection of episodes was made. In the prepro-
cessing task, noise, and asystole segments were removed from
the classification procedure, as done in other studies [7], [8],
[37]. For this purpose, we used the information contained in
the annotation files. Nevertheless, usual signal processing al-
gorithms could be applied instead. Noise can be detected by
examining the slew rate of the ECG signal [8], while asystole
intervals can be identified by amplitude and signal power anal-
ysis [37].

A total of 13 ECG parameters have been computed to char-
acterize VF and shockable rhythms. These include widely an-
alyzed parameters, such us TCI, CM, PSR, HILB, STE, A2,
M, and VFLeak and relatively recent proposals, namely TCSC,
SpEn, MEA, MAYV, and FM (for detection purposes). The over-
all detection performances, when considering each parameter
individually, are in agreement with previous studies [4], [5], [7],
[13], [14], [38], demonstrating that TCSC, SpEn, and VFleak
provide the best diagnostic properties, followed by HILB and
PSR, while TCI, CM, and STE perform poorly.

In this study, it has been shown that the use of SVM algorithms
combining ECG features significantly improves the efficiency
for the detection of life-threatening arrhythmias. SVM classi-
fiers have been extensively used with the ECG signal in the
context of wave delineation, beat detection, general arrhythmia
discrimination, and in other application, such as heart rate vari-
ability or detection of ischemia (see [39] for a comprehensive
review). However, the proposed utilization of SVM algorithms
to detect VF/shockable episodes using a number of well-known
ECG features has not been widely explored. In [40], a VF detec-
tion algorithm based on SVM algorithm combining the Hurst
index and the PSR parameter was proposed, showing a better
performance than VFleak, TCI, CM, PSR, M, and A2 param-
eters, and thus emphasizing the efficacy of combining ECG
parameters with robust machine learning algorithms. More re-
cently, in [20] a total 14 ECG parameters were computed and a
selection of nine were used with SVM classifiers. Compared to
the present study, Li ez al. [20] used a different window size (5 s),
a different set parameters and different databases (they included
the American Heart Association database). They reported val-
ues of SE = 90.2, SP = 99.6, and AUC = 99.7 on the test set.
Differences in performance between this and the present study
emphasize the need for building a public ECG signal database
divided into a training and a test datasets, in order to compare
machine learning strategies.

The use of machine learning algorithms requires to set the
free parameters using a training set of examples. In the case of
unbalanced datasets, this step is crucial to assess a good gen-
eralization performance. Under these circumstances, the BER
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metric in SVM algorithms represents as a suitable figure of merit
to jointly maximize the values of SE and SP. Besides the BER,
other metrics taking into account the imbalanced nature of the
detection problem [41], such as the F-measure or the AUC could
be of interest to guide the classification model and set the free
parameters.

Combining the information from a number of features to per-
form a given learning tasks requires FS methods to analyze the
relevance of those features, in order to eliminate unnecessary
or redundant information, and this way to construct a robust
and well-performed machine learning algorithm. In this study,
the relevance of 13 well-known ECG parameters to detect life-
threatening arrhythmias has been studied using FS methods. We
used a filter-type approach, combining the correlation, Fisher,
and the mRMR criteria scores to take into account both linear
and nonlinear relationship among features and the class label.
The proposed FS methodology was consistent with the detection
performance of the analyzed parameters, demonstrating that this
procedure is an interesting method for evaluating the discrimi-
nation ability of a set of ECG parameters. Using this combined
score ranking, parameters as TCI, A2, and CM, which have been
extensively used in the literature, have shown not to be relevant
features for arrhythmia discrimination.

Itis also important to determine which parameters are relevant
to the classification process, and how they affect the learning
process. This has been evaluated by a backward selection pro-
cedure defined in Algorithm 1. Comparative analysis between
the VF and the shockable detection scenarios (see Fig. 3), sug-
gests that in the VF classification problem the SVM algorithm
is suffering from high variance (wider confident interval area)
and high bias (higher BER metric), thus indicating that there
is still possibility to improve the performance if more train-
ing examples and features/parameters are incorporated into the
SVM model. This again raises the need of having large public
databases to evaluate VT/VF detection algorithms. Also, the FS
analysis showed that features need to be combined in order to
provide highly accurate results. The individual discriminative
power of a variable is not sufficient to build a robust detec-
tor. The relationships with others and with the classifier have
to be taken into account. In this context, more elaborated FS
approaches (wrapper or embedded methods) and/or or different
classifiers could be of interest. However, this implementation
exceeds the purpose of this study.

In conclusion, the present study has shown that the use of
SVM learning algorithms can improve the efficiency for the de-
tection of life-threatening arrhythmias. In this scenario, FS tech-
niques might help to better understand the data and to provide
valuable insights to build highly accurate detection algorithms.
Also, in the case of SVM classifiers using unbalanced datasets,
which constitute the standard case in arrhythmia detection prob-
lems, the BER metric is an interesting magnitude to set the free
parameters of the algorithm.
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